-
TWIN

Techinical Note
foftware

@ Sinnotics

Number : SWOO5
Subject: 8048 Assembler on TWIN

Date : 1979-02-14

Philips Elcoma welcomes you as a new user of the 8048 family
assembler. f

The first part of this guide describes the use on TWIN and
Y some points that need your special attention.
The latter part describes the assembly language.

This guide only provides you with an insight in the 8048
assembly language. For information and explanation of the
TWIN system you are assumed to be familiar with the manuals
describing the TWIN system.

J.C. Cranendonk

PARD ONE

1. INTRODUCTION

With the 8048 assembler you are now able to generate from an
8048 source code an object code (8048 instructions) that can
be loaded into the TWIN memory.

EXECUTION

The assembler is executed by the standard command on TWIN to
execute 2650 programs on the slave side called: XEQ.

Total format: XEQ Asm8048/x ®,@,@

W ASMB8048 is the program name of the 8048 assembler to
be executed
x is the drive number of the diskette on which
the 8048 assembler is residing
(:) is the file identification for the 8048 source
code file (name + drive)
<:> is the file identification for the file that
will be used to contain the listing file (name
+ drive, e.g.: LPT1 or OUTLIST/1 or ... etc.)
(:) is the file identification for the file that
will be used to save the generated object
program in a format that is defined as
TWIN-HEX file format (name + drive)
8048 8048 assembler
source ASM 8048
? input ?
TWIN: Listing
PRSI RER output
ASMB8048
8048

3 object
<> output

RBig. |

Note: The output of the 8048 assembler on TWIN is in the
TWIN-HEX format and can therefore be loaded into the
TWIN slave memory with the RHEX command. (for
description of RHEX command see TWIN documentation)

INPUTS

Instruction format.

The 8048 assembly language instructions and assembler
directives consist of up to four fields as follows:

¢'...5....¢.‘..5.l..¢..'.I..Q..l.'.'l.l...I...lll’.l.
LABEL OPCODE OPERAND COMMENT

The label and comment field are always optional.

The operand field may contain zero, one or two operands
depending on the opcode specified. Any number of blanks

can seperate fields. The entire instruction must be entered
on one line terminated by a carriage return and line feed.
No continuation lines are possible, though you may have
lines consisting entirely of comments.

Note 1: label field.

A label can be one to four alpha numeric characters,
with the first character alphabetic. The label should
not be followed by a colon.

Note 2: comment field.

The comment field must start with a semicolon (;)
when it is the only field used, when other fields
are preceeding the comment field the semicolon is
optional.

Note 3: operand field.

In some cases the operand field is not completely
checked. When the leading part is unique this part
is used to identify the operation the latter part
is not checked. It remains, however, advisable to
write syntactically right programs to be sure that
future conversion of programs remains possible
without large modifications.

LISTING OUTPUT

The listing output is generated in a printablelformat. It
can be written to a disk file for later print out by a
PRINT or COPY statement.

Layout:

TWIN 82048 ASRFMELFR VER 1.0

MY, LOC, (OB

EC T,

(see TWIN Operator Guide).

6. ERROR INDICATIONS

LPRURN lr.,é SOLIRCE L INF
97 0044 aF b 3 § MOVDE F7, A
S8 0045 40 ' DRl A, @RO
59 0046 41 L ORL. A, eR1
e Copy of source line (at maximum 52 char)
=—=» Error indication area for Instruction.
When an error is detected in the
opcode or operand field this is
indicated in this column.
‘> Error indication area for Labels.
When an error is detected in the
label field this is indicated in
this column.
—> Generated object code
—> Actual address of the first byte of
generated object code.
—) Statement or source line number.
5. OBJECT CODE OUTPUT
= The object code output is generated in the TWIN HEX format.

Errors indicated in label area (errors concerning the label
definitions).

S : Syntactical error in label definition (too long, illegal
characters used, not starting with alphabetic.

reserved word used).

D ¢ Duplication. The label has been defined before.

T : Too many label definitions used (the maximum number of
labels to be used in 255!).

Errors indicated in the instruction area

By

Page error. A reference is tried to be made outside the
current page in an instruction that does not allow for
a page cross.

Inconnu. The label referred to is not defined.
Value violation. This error is given when a numeric
value is too large, also for register numbers, port

numbers etc.

Code error. Wrong operation code used.

PART T WO

1l

ASSEMBLER CONCEPTS

Assembly language

If you have ever written a computer program in a machine-
recognizable form such as binary code, you will be particularly
appreciative of the advantages of programming in a symbolic
assembly language. Assembly-language operation codes (opcodes)
are easily remembered (for example, MOV for a 'move'

instruction, JMP for a 'jump'). You can also express symbolically
the addresses and values referenced in the operand field

of assembly language instructions. The names for these

operands can be selected to suggest their purpose, making them

as mnemonic as the opcodes.

The program consisting of assembly language instructions

is called a source program. This program is passed through

an assembler, which performs the clerical task of translating
symbolic code into object code recognizable by the 8048
microcomputers.

The source file passed to the assembler actually includes

more than source program instructions. It also includes
assembler directives and (possibly) assembler controls.

Only source program instructions are converted into executable
object code, however. The assembler directives and controls
initiate various functions that assist and direct the
assembler in its translation operation.

Assembler output consists of three possible files: the

object file containing your program code in machine-executable
form, the list file printout of your source code and object
code,

Instruction format

8048 assembly-language instructions and assembler directives
consist of up to four fields as follows:

Label. Opcode Operand sComment

The .label and comment fields are always optional. The operand
field may contain zero, one, or two operands depending on

the opcode specified. Any number of blanks can separate fields.
The entire instruction must be entered on one line, terminated
by a carriage return and line feed. No continuation lines are
possible, though you may have lines consisting entirely of
comments.

Label Field.

An instruction label is a symbol name whose value is the
specific memory location where the instruction resides. It
is optional. A label can be one to four alphanumeric
characters, with the first character alphabetic. A symbol
used as a label cannot be redefined elsewhere in your
program. (See 'Symbols and Symbol Tables' later in this
chapter.)

Opcode Field.

This field contains the mnemonic operation code for the
8048 instruction or assembler directive to be performed.
It is terminated by a blank or nonalphanumeric character,
or by a carriage return and line feed if no operand or
comment field is present.

Operand field.

The operand field identifies the data to be operated on
by the specified instruction opcode. Some instructions
require no operand. Others require one or two operands.

In the latter case, the operands are separated by a comma.
As a general rule, when two operands are required (data
transfer, addition, and logical operations), the first
operand specifies the destination (or target) of the
operation's result and the second operand specifies the
source data.

ADD A,R3 ;ADD CONTENTS OF REG 3 TO ACC

ANL A,R3 ; LOGICAL 'AND' CONTENTS OF ACC
;WITH MASK CONTAINED IN REG 3

MOV R1, #OFFH ;MOVE 'FF' HEX (ONES) INTO REG 1

Operands can reference directly data contained in 8048
registers such as the PSW, accumulator, or data memory
working registers 0-7. ;

MOV A,PSW sMOVE PSW CONTENTS TO ACC
XCH A,R4 ; EXCHANGE ACC DATA WITH
sREG 4 DATA

All data memory locations can be accessed indirectly by
prefacing a reference to Register O or 1 with a 'commercial
at' sign (@)

MOV @RO,A ;MOVE ACC CONTENTS TO DATA MEMORY
; LOCATION WHOSE ADDRESS IS
s SPECIFIED IN REG O

The JMPP instruction allows program memory locations to be
accessed indirectly by prefacing an accumulator reference
with

JMPP A s CONTENTS OF PROGRAM MEMORY LOCATION
POINTED TO BY
$ACC ARE SUBSTITUTED FOR BITS O-7 OF
PROGRAM COUNTER.

Operands can contain 'immediate' data. The desired value

is inserted directly into the operand field. All immediate
data must be prefixed with a pound sign () to distinguish
it from register data and must evaluate to eight bits.

Immediate data can be in the form of an ASCII constant (a
character enclosed in single quotes), a number, an expression
to be evaluated at assembly time, or a symbol name. To
indicate a quote as an ASCII constant, show the quote as

two consecutive single quotes ("). Any symbol appearing

in the operand field must be previously defined.

MOV A, A ;sMOVE THE VALUE OF ASCII
; CONSTANT 'A' (01000001)
; INTO ACC

ADD A, OAH ;ADD HEX '0OA' (00001010)
;TO ACC

Finally, the operand field of a jump instruction (that is,
the address to be jumped to) can be expressed as a symbolic
label, as an absolute 12-bit program memory address, or as
an expression that can be evaluated to such an address.

In no case is this operand preceded by a pound sign.

JMP START ; JUMP TO THE LOCATION LABELED 'START'
JMP 200H ;JUMP TO LOCATION 200 HEX (512 DECIMAL)

Expression evaluation and symbols are discussed in more detail
in the next two sections of this chapter.

Comment Field.

The comment field can contain any information you deem
useful for annotating your program. The only stipulation
is that this field be preceded by a semicolon.

Arithmetic operations

When discussing arithmetic operations, we must distinguish
between operations performed by your program when it is
executed (such as ADD A,R5) and expression evaluation
performed by the assembler at assembly time (such as

MOV A, P+3x(X/2). Numbers are represented indentically
in both cases, but your program has considerably more
flexibility than the assembler in determining the range
of numbers, internal notation, and whether numbers are to
be considered signed or unsigned. The characteristics of
both modes of arithmetic are summarized in Figure 2 and
discussed in more detail in the following subsections.

Number Characteristic

. Assembly—Time
Expression Evaluation

Program Execution
Arithmetic

Base Representation

Range
Evaluates To:
Internal Notation

Signed/Unsigned
Arithmetic

Binary, Octal, Decimal,
or Hexadecimal

0-(64K-1)
16 Bits
Two’s Complement

Unsigned -

Binary, Octal, Decimal,
or Hexadecimal

User Controlled

User Interpretation

Two’s Complement
o

Unsigned Unless
User Manipulates

Figure 2 Number Representation

Number Base Representation.

Numbers can be expressed in decimal, hexadecimal, octal, or
binary form. A hexadecimal number must begin with a decimal
digit and have the suffix 'H' (for example: 3AH, OFFH, 12H).
Octal values must have one of the suffixes '0' or 'Q'

(for example: 760,53Q). Binary numbers must have the suffix 'B'

(for example: 10111010B). Decimal numbers can be suffixed
optionally by 'D' (for example: 512, 512D). Where no suffix
is present, decimal is assumed.

Permissible Range of Numbers,

In general, numbers can range between O and 65,535 (OFFFFH).
Numbers outside this range are evaluated 'modulo' 64K

(that is, a number greater than 64K is divided by 64K and
the remainder substituted for the original number). All
expressions can be evaluated to 16 bits.

e

Certain limitations must be applied within this general range,
however. For example, most program execution arithmetic is
done using the 8-bit accumulator or 8-bit registers and most
results evaluate to 8 bits. To work with large numbers

would require manipulation of register pairs.

If you are doing signed arithmetic, the high-order bit of
each number is used to indicate the sign of that number

(0 if positive, 1 if negative). Consequently, the remaining
bits can only express a number in the range -32,768 to
+32,767 for 16-bit arithmetic. For 8-bit arithmetic, the
range is -128 to +127.

If a number is too large for its intended use, either an
error results or modulo arithmetic is performed. For example:

o) Program memory addresses must be in the range 0-4095 (12
. bits). In some cases, an address reference must be
'within page} that is, within the range 0-255 (8 bits).

o Data memory addresses must be in the range 0-255 (8bits).

o} Operands containing 8-bit immediate data must evaluate
to an 8-bit number.

o Expressions in a DB assembler directive (except strings)
must evaluate to 8 bits.

Two's complement notation allows subtraction to be performed
by a series of bit complementations and additions (thus
reducing the circuitry requirements of a processor). A

number is converted to two's complement form by complementing
all its bits and adding a binary one to the result.

When a number is interpreted as a signed two's complement
number, the low-order bits supply the magnitude of the

number and the high-order bit is interpreted as the sign of

the number. As was mentioned above, the range of a signed two's
complement value is -32,768 to +32,767 (for 16 bits) and

-128 to +127 (for 8 bits). : :

When a 16-bit value is interpreted as an unsigned two's
complement number, it is considered to be positive and in
the range 0-76,535. An 8-bit value is in the range 0-255.

The assemblers perform all expression evaluation assuming
unsigned two's complement numbers. Similarly, execution-
time arithmetic normally assumes unsigned two's complement
notation, but you can perform signed arithmetic by isolating
and inspecting the high-order bit with the instruction:

JB7 MINUS sIF ACC BIT 7=1 GO TO 'MINUS' ROUTINE

< .

The MCS-48 instruction set does not include a subtraction
instruction. Subtraction is done by complementing the
accumulator and proceeding as in a normal two's complement
addition operation. The CPL A (complement accumulator)
instruction performs a straight binary one's complement.

You must perform the binary addition of one, necessary

to convert the number to two's complement notation, yourself.

Example: Subtract 1AH from 63H using signed two's complement
notation.

MOV A, 1AH ;MOVE '1AH' INTO ACC (00011010)
CPL A ;ONE'S COMPLEMENT ACC (11100101)
INC A ;CONVERT TO TWO'S COMPLEMENT
; (11100110)
ADD A, 63H ;ADD '63' TO VALUE IN ACC (01001001)
JB7 MINUS sIF ACC BIT 7=1 GO TO 'MINUS' ROUTINE

The result is +49H.

An expression is a combination of numbers, symbols, and
operators. The latter can be arithmetic, relational, and
logical operators or specially-defined operators. Any symbol
appearing in an expression must have a previously-defined
absolute value.

The ASCII characters 'null' and 'rubout' are ignored on input,
but the null string can be represented by two consecutive
quotes or by a missing operand. The null string is illegal

in any context that requires numerical evaluation.

The assembler includes five groups of operators that permit
the following assembly-time operations: arithmetic, bit
shifting operations, logical evaluation, value comparison,
and byte isolation. These are all assembly-time operations.
Once the assembler has evaluated an expression, it becomes
a permanent part of your program.

Arithmetic Operators.

The arithmetic operators are as follows:

Operator Meaning

+ Unary or binary addition

- Unary or binary subtraction

X Multiplication

£ Division. Any remainder is discarded (7/3=2)

4o

Example:

The following expressions generate the bit pattern for the
ASCII character A:

5+30x2
(25/5)+30x2
5+(-30x-2)

Expressions are evaluated left to right. Operators with
higher precedence are evaluated before other operators that
immediately precede or follow them. When two operators have
equal precedence, the leftmost is evaluated first.

Parentheses can be used to override normal rules of precedence.
The part of an expression enclosed in parentheses is evaluated
first. If parentheses are nested, the innermost are evaluated
first.

15/3+18/9
15/(3+18/9)

The following list describes the classes of operators in
order of precedence:

5+ B =7
15/3+2) = 15/5 = 3

o Parenthesized expressions
o Multiplication/Division:x,/
o Addition/Subtraction:+,- (Unary and binary)

Symbols and symbol tables

Symbolic Addre§§ing

If you have never done symbolic programming before, the
following analogy may help clarify the distinction between
a 'symbolic' and an ‘'absolute' address.

The locations in program memory can be compared to a cluster
of post office boxes. Suppose Richard Roe rents box 500

for two months. He can then ask for his letters by saying
'Give me the mail in box 500', or 'Give me the mail for Roe'.
If Donald Doe later rents box 500, he too can ask for his
mail by either box number 500 or by his name.

The content of the post office box can be accessed by a
fixed, absolute address (500) or by a symbolic, variable
name. The postal clerk correlates the symbolic names and
their absolute values in his log book.

- 1% .

The assembler, performs the same function, keeping track of
symbols and their values in a symbol table. Note that you

do not have to assign values to symbolic addresses. The
assembler references its location counter during the assembly
process to calculate these addresses for you. (The location
counter does for the assembler what the program counter

does for the microcomputer. It tells the assembler where

the next instruction or operand is to be placed in memory.)

Symbol Characteristics

A symbol can contain one to four alphabetic (A-Z) or numeric
(0-9) characters (with the first character alphabetic).

A dollar sign can be used as a symbol to denote the value
currently in the location counter. For example, the command

JMP $+6

forces a jump to the instruction residing six memory locations
higher than the JMP instruction.

The assemblers regard symbols as being reserved or user-
defined, global or limited, permanent or redefinable. All
symbols are absolute, that is, fixed to some absolute memory
address or fixed-value expression unaffected by program
loading.

Reserved and User-Defined symbols.

The '$' symbol and following 8048 instruction-set opcodes are
reserved and should not be specified as user-defined symbols

ADD ENTO JNI MOVD RL
ADDC IN JNIBF MOvVP RLC
ANL INC JNTO MOVP3 RR
ANLD INS JNT1 MOVX RRC
CALL JBn JNZ NOP SEL
CER - - JC JOBF ORL SEop
E€PL -~ IFO JTF ORLD STRT
DA JF1 JTO ouT SWAP
DEC JjmpP T OUTL XCH
pIS = JMPP)z RET XCHD
DJNZ JNC MOV RETR XRL

EN

-1 .

The following instruction operand symbols and symbols
required by the assembler are also reserved:

Symbol Meaning

A Accumulator

RO Register O

R1 Register 1

R2 Register 2

R3 Register 3

R4 Register 4

R5 Register 5

R6 Register 6

R7 Register 7

PSw Program Status Word
BUS BUS Port

PO I/0 Port O (8021)
P1 1/0 Port 1

P2 1/0 Port 2

P4 I1/0 Port 4

P5 1/0 Port 5

P6 I/0 Port 6

P7 I/0 Port 7

C Carry Flag

AL Timer Register
CNT Counter Register
TCNT Timer/Counter
RBO Register Bank O
RB1 Register Bank 1
MBO Memory Bank O

MB1 Memory Bank 1

I ; Interrupt

TCNTI Timer/Counter Interrupt
FO Flag O

™M Flag 1

Finally, the following directives vannot be used as symbols
except in a limited context:

DB END EQU ORG

DS

Dw SET
EJE
SPC

User-defined symbols are symbols you create to reference
instruction addresses and data. These symbols are defined
when they appear in the label field of an instruction or

in the name field of EQU or SET assembler directives.

Values for these symbols are determined modulo 64K although
specific environments may limit the value even further.

(See the subsection 'Permissible Range of Numbers, 'earlier
in this chapter.) Values outside these ranges cause an error.

-8

NOTE: Only instructions that allow registers as operands
may have register-type operands. Expressions containing
register-type operands are flagged as errors. The only
assembler directives that may contain register-type
operands are EQU and SET. Registers can be assigned
alternate names only by EQU or SET.

Permanent and Redefinable Symbols.

Most symbols are permanent, that is, their values cannot
change during the assembly operation. Only symbols defined
with the SET assembler directive are redefinable.

R

2. 8048 ASSEMBLY LANGUAGE INSTRUCTIONS

SYMBOLS AND ABBREVIATIONS USED

A Accumulator

AC Auxillary Carry

addr 12-Bit Program Memory Address
Bb Bit Designator (b=0-7)

BS Bank Switch

BUS BUS Port

C Carry

CLK Clock

CNT Event Counter

D Mnemonic for 4-Bit Digit (Nibble)
data 8-Bit Number or Expression

DBF Memory Bank Flip-Flop

PO, B Flag 0, Flag 1

I Interrupt

P Mnemonic for in-page Operation
PC Program Counter

Pp Port Designator (p=1, 2 or 4-7)
PSW Program Status Word

Rr Register Designator (r=0, 1 or 0-7)
SP Stack Pointer

1L Timer

TF Timer Flag

PO5- T Test 0, Test 1

X Mnemonic for External RAM

Immediate Data Prefix
Indirect Address Prefix

$ Current Value of Program Counter
X Contents of X
t{x)) Contents of Location Addressed by X

Is Replaced by

NOTE: In the examples label definitions do end with a colon,
the assembler described in this guide will not accept
these definitions. Also the max nr. of characters
for a label definition is four.

ADD A,R; Add Register Contents to Accumulator
[o110]1rrr|
The contents of register 'r' are added to the
accumulator. Carry is affected.
(A) = (A) + (Rr) r=0-7
Example: ADDREG: ADD A.R6 :ADD REG 6 CONTENTS
.TO ACC
ADD A,@R, Add Data Memory Contents to Accumulator
[0110]0001]
The contents of the resident data memory location
addressed by register 'r' bits 0-5 are added to
the accumulator. Carry is affected.
(A)=—(A) * ((Rr)) =01
Example: ADDM: MOV RO, #0AFH ;MOVE ‘AF' HEX TO REG 0

ADD A, @R0O ,ADD VALUE OF LOCATION

147 TO ACC

ADD A,#data Add Immediate Data to Accumulator

Example:

[0000[0011) 79595 0s 362 160]

This is a 2-cycle instruction. The specified data
is added to the accumulator. Carry is affected

(A) = (A) + data

ADDID: ADD A #ADDER: ;ADD VALUE OF SYMBOL
ADDER’ TO ACC

ADDC AR, Add Carry and Register Contents to Accumulator

Example:

ADDC A,@R, Add Carry and Data Memory Contents to Accumulator

1rrr4J

The content of the carry bit is added to accumulator
location 0 and the carry bit cleared. The contents

of register 'r’ are then added to the accumulator.
Carry is affected.
(A) = (A)+(Rr)+(C)

ADDRGC: ADDC A R4

0111

r=0-7

:ADD CARRY AND REG 4
:CONTENTS TO ACC

Example:

The content of the carry bit is added to accumulator
location 0 and the carry bit cleared. Then the contents
of the resident data memory location addressed by
register 'r' bits 0-5 are added to the accumulator.
Carry is affected.

(A) = (A)*((Rn)+(C)

ADDMC: MOV R1,#40
ADDC A.@R1

r=0-1

:MOVE '40' DEC TO REG 1
:ADD CARRY AND LOCATION 40
;CONTENTS TO ACC

ADDC A #data Add Carry and Immediate Data to Accumulator

[0001]0011] [d7deds5da | d3d2d1do]

This is a 2-cycle instruction. The content of the
carry bit is added to accumulator location 0 and
the carry bit cleared. Then the specified data is
added to the accumulator. Carry is affected.

(A) = (A)+data+(C)

Example: ADDC A #225 :ADD CARRY AND ‘225’ DEC
;TO ACC
ANL AR, Logical AND Accumulator With Register Mask
0101 trer
Data in the accumulator is logically ANDed with the
mask contained in working register 'r'.
(A)= (A) AND (Rr) r=0-7
Example: ANDREG: ANL A R3 AND’ ACC CONTENTS WITH MASK

IN REG 3

ANL A,@R;

- 7

Logical AND Accumulator With Memory Mask

Example:

Data in the accumulator is logically ANDed with the
mask contained in the data memory location referenced
by register ‘r', bits 0-5.

(A)=— (A) AND ((Rr)) r=0-1

ANDDM: MOV RO.#0FFH MOVE 'FF' HEX TO REG 0
ANL A, @RO ;'AND’ ACC CONTENTS WITH
iMASK IN LOCATION 63

ANL A,#data Logical AND Accumulator With Immediate Mask

Examples: ANDID: ANL A #OAFH

[0101]0011] [d7dgdsds |dadpdido]
This is a 2—cyble instruction. Data in the accumulator
is logically ANDed with an immediately-specified mask.

(A)= (A) AND data

"AND' ACC CONTENTS
‘WITH MASK 10101111
AND' ACC CONTENTS
‘WITH VALUE OF EXP
;3+X/Y

ANL A #3+X/Y

ANL BUS,#data Logical AND BUS With Immediate Mask

Example:

[1001]1000] d7dgdsds|d3dpdidg!
This is a 2-cycle instruction. Data on the BUS port is
logically ANDed with an immediately-specified mask. This

instruction assumes prior specification of an 'OUTL
BUS, A’ instruction

(BUS) = (BUS) AND data

ANDBUS: ANL BUS, #MASK 'AND’ BUS CONTENTS
‘WITH MASK EQUAL VALUE
:OF SYMBOL ‘MASK’

ANL Pp,#data Logical AND Port 1-2 With Immediate Mask

Example:

[1001[10pp]

This is a 2-cycle instruction. Data on port 'p’is
logically ANDed with an immediately-specified mask.

(Pp) = (Pp) AND data
ANDP2: ANL P2 #0F0H

~d7dgdsdg l dzdp dqdp

p 1-2

“AND’' PORT 2 CONTENTS
‘WITH MASK 'FO' HEX
{(CLEAR P20-23)

ANLD Pp,A Logical AND Port 4-7 With Accumulator Mask

Example:

LOO L ERR

This is a 2-cycle instruction. Data on port 'p’ is
logically ANDed with the digit mask contained in
accumulator bits 0-3

(Pp) = (Pp) AND (A0-3) p-4-7

Note: The mapping of port ‘p’ to opcode bits 0-1
is as follows:

-
o
o
o
=
-

-n—tool

R T
\lG’(.hb'

'AND’ PORT 4 CONTENTS
;WITH ACC BITS 0-3

ANDP4: ANLD P4,A

CALL address Subroutine Call
[@10a9ag 1] 0100] [a;agasas azapajag

This is a 2-cycle instruction. The program counter and
PSW bits 4-7 are saved in the stack. The stack pointer
(PSW bits 0-2) is updated. Program control is then

passed to the location specified by ‘address’. PC

bit 11 is determined by the most recent SEL MB instruction.

Execution continues at the instruction following the
CALL upon return from the subroutine.

((SP)) =— (PC), (PSW 4.7)
(SP) == (SP)+1
(PCg-10) == addrg.1o
(PCp-7)= addrg.7
(PCy4) = (DBF)

Example: Add three groups of two numbers. Put subtotals in
locations 50, 51 and total in location 52.

MOV R0,#50 ;MOVE '50' DEC TO ADDRESS
/BEGD
BEGADD: MOV A R1 ;MOVE CONTENTS OF REG 1
;TO ACC

ADD A,R2 ;ADD REG 2 TO ACC
CALL SUBTOT;CALL SUBROUTINE 'SUBTOT'
ADD A R3 ;ADD REG 3 TO ACC
ADD A,R4 ;ADD REG 4 TO ACC
CALL SUBTOT ;CALL SUBROUTINE 'SUBTOT'
ADD AR5 ;ADD REG 5 TO ACC
ADD A.R6 ;ADD REG 6 TO ACC
CALL SUBTOT ;CALL SUBROUTINE 'SUBTOT'

SUBTOT: MOV @R0O,A ;MOVE CONTENTS OF ACC TO
{LOCATION ADDRESSED BY

\REG 0
INC RO INCREMENT REG 0
BET ;RETURN TO MAIN PROGRAM

CLR A Clear Accumulator

00100 i}

The contents of the accumulator are cleared to zero.

A< 0
CLR C Clear Carry Bit

1001101111

During normal program execution, the carry bit can
be set to one by the ADD, ADDC, RLC, CPL C. RRC, and
DAA instructions. This instruction resets the carry bit to zero.

C=0

CLR F1 Clear Flag 1

Flag 1 is cleared to zero.
(F1)=0

CLR FO Clear Flag 0
Flag 0 is cleared to zero

(FO)= 0

CPL A Complement Accumulator

The contents of the accumulator are complemented.
This is strictly a one's complement. Each one is
changed to zero and vice-versa.

(A)= NOT (A)

Example: Assume accumulator contains 01101010.
CPLA: CPL A ;ACC CONTENTS ARE COMPLE-
‘MENTED TO 10010101

CPL C Complement Carry Bit
[1010fo11s
The setting of the carry bit i1s complemented; one is
changed to zero, and zero is changed to one.
(C) = NOT (C)
Example: Set C to one; current setting is unknown

CTO1:CLRC .C IS CLEARED TO ZERO
CPLC ;C IS SET TO ONE

w18

CPL FO Complement Flag 0
=
[1001[0101]
The setting of flag 0 is complemented; one is
changed to zero, and zero is changed to one

FO=- NOT (F0)
CPL F1 Complement Flag 1

[1ori]oror]
The setting of flag 1 is complemented: one is
changed to zero, and zero is changed to one.

(F1)=— NOT (F1)

DA A Decimal Adjust Accumulator
[0101]0111]
The 8-bit accumulator value is adjusted to form two
4-bit Binary Coded Decimal (BCD) digits following
the binary addition of BCD numbers. The carry bit
C is affected. If the contents of bits 0-3 are

greater than nine. or if AC is one. the accumulator
is incremented by six

The four high-order bits are then checked. If bits
4-7 exceed nine, or if C is one, these bits are
increased by six. If an overflow occurs, C is

set to one; otherwise, it is cleared to zero.

Example: Assume accumulator contains 10011011

DA A ;ACC ADJUSTED TO 00000001
‘WITH C SET
C AC 7 43 0
-0 0000 Bk
01 L0 ADD SIX TO BITS 0-5

00 £0:170::0:0:0:-1

0. L0 ADD SIX TO BITS 4-7
120 00000001 OVERFLOW TO C

00000111
The contents of the accumulator are decremented by one
(A)=— (A)-1

Example: Decrement contents of external data memory location 63.

MOV RO,#3FH :MOVE '3F' HEX TO REG 0

MOVX A,@RO ;MOVE CONTENTS OF LOCATION 63
;TO ACC

DEC A ;DECREMENT ACC

MOVX @R0.A ;MOVE CONTENTS OF ACC TO

:LOCATION 63 IN EXPANDED
:MEMORY

DEC R, Decrement Register

The contents of working register 'r' are decremented
by one.

(Rr)=— (Rr)-1 r=0-7
Example: DECR1: DEC R1

DIS | Disable External Interrupt

[ooo1]or01

External interrupts are disabled. A low signal on
the interrupt input pin has no effect.

DIS TCNTI Disable Timer/Counter Interrupt

00134010}

Timer/counter interrupts are disabled. Any pending
timer interrupt request is cleared. The interrupt
sequence is not initiated by an overflow, but the
timer flag is set and time accumulation continues.

;DECREMENT CONTENTS OF REG 1

DJNZ R;, address Decrement Register and Test

[t110]1rrr] [a73pa5a4 agaza;ag]

This is a 2-cycle instruction. Register 'r' is
decremented and tested for zero. If the register
contains all zeros, program control falls through
to the next instruction. If the register contents

are not zero, control jumps to the specified ‘address’.

The address in this case must evaluate to 8-bits, that
is, the jump must be to a location within the current

256-location page.

(Rr)=— (Rr)-1 r=0-7
If Rr not O
(PCp-7)=— addr

Note: A 12-bit address specification does not cause an
error if the DJNZ instruction and the jump target are
on the same page. If the DJNZ instruction begins in

location 255 of a page, it must jump to a target
address on the following page.

Example: Increment values in data memory locations 50-54.

MOV RO,#50 :MOVE '50' DEC TO ADDRESS
;REG 0
MOV R3,#5 :MOVE '5' DEC TO COUNTER

;REG 3
INCRT: INC @RO

JREG 0

INC RO :INCREMENT ADDRESS IN REG 0
DJNZ R3, INCRT ;DECREMENT REG 3 — JUMP TO
“INCRT' IF REG 3 NONZERO
“NEXT' ROUTINE EXECUTED

NEXT —
;IF R3 1S ZERO

EN | Enable External Interrupt

[Go00lar01]

External interrupts are enabled. A low signal on
the interrupt input pin initiates the interrupt
sequence.

EN TCNT! Enable Timer/Counter Interrupt

Timer/counter interrupts are enabled. An overflow
of this register initiates the interrupt sequence.

ENTO CLK Enable Clock Output

The test 0 pin is enabled to act as the clock output.

This function is disabled by a system reset.
Example: EMTSTO: ENTO CLK
IN A,Pp Input Port or Data to Accumulator

This is a 2-cycle instruction. Data present on port
‘p’ is transferred (read) to the accumulator.

(A)=- (Pp) p=1-2
Example: INP12: IN AP1

;TO ACC
MOV R6,A :MOVE ACC CONTENTS TO
:REG 6
IN A,P2 JINPUT PORT 2 CONTENTS
,TO ACC
MOV R7,A :MOVE ACC CONTENTS TO REG 7
INC A Increment Accumulator
500
The contents of the accumulator are incremented
by one.
(A) = (A)*1

Example: Increment contents of location 100 in external
data memory.
INCA: MOV RO0,#100

'REG 0

MOVX A, @RO :MOVE CONTENTS OF LOCATION
;100 TO ACC

INC A JINCREMENT A

MOVX @RO,A :MOVE ACC CONTENTS TO

;LOCATION 100

INCREMENT CONTENTS OF
:LOCATION ADDRESSED BY

:ENABLE TO AS CLOCK OUTPUT

JINPUT PORT 1 CONTENTS

:MOVE '100' DEC TO ADDRESS

- 1Y -

INC Ry Increment Register

0001 1rr]

The contents of working register 'r’ are incremented
by one.

(Rr) = (Rr)+1 r=0-7
Example: INCRO: INC RO JINCREMENT ADDRESS REG 0
INC @R, Increment Data Memory Location
000r
The contents of the resident data memory location
addressed by register 'r’ bits 0-5 are incremented
by one.
((Rr)) == ((Rn)+1 r=0-1
Example: INCDM: MOV R1,#0FFH ;MOVE ONES TO REG 1

INC @R1 {INCREMENT LOCATION 63

INS A,BUS Strobed Input of BUS Data to Accumulator

Example:

This is a 2-cycle instruction. Data present on the
BUS port is transferred (read) to the accumulator
when the RD pulse is dropped. (Refer to section on
programming memory expansion for details)

(A)=- (BUS)

INPBUS: INS A,BUS JINPUT BUS CONTENTS

;TO ACC

JBb address Jump If Accumulator Bit is Set

Example:

[b2b1bg1[00710] [ayagasas agapajag

This is a 2-cycle instruction. Control passes to the
specified address if accumulator bit ‘b’ is set
to one.

(PCq.-7)= addr If Bb=1
(PC) = (PC)+2 If Bb=0

JB41S1: JB4 NEXT ;JUMP TO ‘NEXT' ROUTINE
;IF ACC BIT 4=1

JC address Jump If Carry Is Set

[1111]J0110] [a7363s5a4 a3apa;ag]
This is a 2-cycle instruction. Control passes to the
specified address if the carry bit is set to one.

(PCo.7)=— addr If C=1
(PC) = (PC)*2 If C=0
Example: JC1: JC OVFLOW :JUMP TO 'OVFLOW' ROUTINE
JIF C=1
JFO0 address Jump If Flag 0 Is Set
[1011]J0110] [arapasas|agapasap]

Example:

This is a 2-cycle instruction. Control passes to the
specified address if flag 0 is set to one.

(PCo.7)=— addr If FO=1
(PC) = (PC)+2 If F0=0

JFOIS1: JFO TOTAL :JUMP TO ‘'TOTAL' ROUTINE
JIF FO=1

JF1 address Jump If Flag 1 Is Set

Example:

[on11]0110] (a786asas azaza: a]
This is a 2-cycle instruction. Control passes to the
specified address if flag 1 is set to one.

(PCq-7) = addr If F1=1
(PC) - (PC)+2 IF F1=0

JF11S1: JF1 FILBUF :JUMP TO FILBUF'
:ROUTINE IF F1-1

JMP address Direct Jump Within 2K Block

Example:

JMPP @A

- 20 =

JTF address Jump If Timer Flag Is Set

[a10a9ag0[0100] a;agasas agapa; ap |
This is a 2-cycle instruction. Bits 0-10 of the program
counter are replaced with the directly-specified
address. The setting of PC bit 11 is determined by
the most recent SELECT MB instruction.

(PCg-10) = addr 8-10
(PCp.7) = addr 0-7
(PCq1) = (DBF)

JMP SUBTOT
JMP $-6

JMP 2FH

:JUMP TO SUBROUTINE 'SUBTOT'

:JUMP TO INSTRUCTION SIX LOCATIONS Example:
:BEFORE CURRENT LOCATION

:JUMP TO ADDRESS "2F' HEX

JTO0 address

s
ajagasa, agapajap)|

This is a 2-cycle instruction. Control passes to the
specified address if the timer flag is set to one,
that is, the timer/counter register has overflowed.
Testing the timer flag resets it to zero. (This
overflow initiates an interrupt service sequence

if the timer-overflow interrupt is enabled.)

[oo01]o110]

(PCq.7) = addr If TF=1

(PC) = (PC)+2 If TF=0

JTF1: JTF TIMER :JUMP TO ‘TIMER' ROUTINE
AF TF=1

Jump If Test 0 Is High

Indirect Jump Within Page

Example:

[fo11[o0011

This is a 2-cycle instruction. The contents of the
program memory location pointed to by the accumulator
are substituted for the ‘page’ portion of the program

counter (PC bits 0-7).
(PCo.7) = ((A))

Assume accumulator contains OFH.

JMPPAG: JMPP @A

Example:

This is a 2-cycle instruction. Control passes to the
specified address if the test 0 signal is high (1)

(PCo.7) = addr 1f TO-1

(PC) = (PC)+2 If TO-0

JTOHI: JTO 53 :JUMP TO LOCATION 53 DEC
JAF TO=1

JT1 address Jump If Test 1 Is High

:JUMP TO ADDRESS STORED IN
:LOCATION 15 IN CURRENT PAGE

JNC address Jump If Carry Is Not Set

Example:

[1110]0110| [aagasas|agazasap]

This is a 2-cycle instruction. Control passes to the

specified address if the carry bit is not set, that

is, equals zero

(PCp.7) = addr
(PC) = (PC)+2

JCO: JNC NOVFLO

Example:

IfC 0

[0101]0110] [ajagasas azagasa]
This is a 2-cycle instruction. Control passes to the
specified address if the test 1 signal is high (=1)

(PCq.7) = addr i Ti=1

(PC) = (PC)+2 If T1=0

JT1HI: JT1 COUNT :JUMP TO ‘COUNT' ROUTINE
JF T1=1

JZ address Jump If Accumulator Is Zero

IF C=1

JUMP TO ‘NOVFLO' ROUTINE
Jf C=0

JNI address Jump If Interrupt Input is Low

Example:

JNTO address Jump If Test 0 Is Low

‘1000{0110{ ‘3736353:”?37323130

This is a 2-cycle instruction. Control passes to the

specified address if the interrupt input signal is

Example:

low (=0), that is, an external interrupt has
been signaled. (This signal initiates an interrupt

service sequence if the external interrupt is enabled.)

(PCo.7)= addr
(PC) = (PC)+2

LOC 3: UNI EXTINT

[1100]0110] [a7agasas azapa;ag

This is a 2-cycle instruction. Control passes to the
specified address if the accumulator contains all
zeros at the time this instruction is executed.

(PCp-7) = addr
(PC) = (PC)+2

JACCO: JZ OA3H

If A=0
If A#0

;JUMP TO LOCATION ‘A3 HEX
:IF ACC VALUE IS ZERO

MOV A, #data Move Immediate Data to Accumulator

If 1-0
1=

JUMP TO EXTINT ROUTINE
if1=0

Example:

Example:

[oo1oJor10] [aragasa;[azaza ag]

This is a 2-cycle instruction. Control passes to the

[0010J0011] (drdedsds]d3dzdido.
This is a 2-cycle instruction. The 8-bit value
specified by ‘data’ is loaded in the accumulator.

(A)=— data

MOV A .#0A3H ‘MOVE "A3 HEX TO ACC

MOV A,PSW Move PSW Contents to Accumulator

specified address, if the test 0 signal is low

(PCo.7) = addr
(PC) = (PC)+2

JTOLOW: JNTO 60

JNT1 address Jump If Test 1 Is Low

[0100J0110] [a7agasas|azazasag|

Thig is a 2-cycle instruction. Control passes to the
specified address, if the test 1 signal is low.

(PCp-7) = addr
(PC) = (PC)+2

JNZ address Jump If Accumulator Is Not Zero

Example:

[1001]0110] [a7apasas agapa;ag)

This is a 2-cycle instruction. Control pases to the

specified address if the accumulator contents are

If TO=0
If TO=1
;JUMP TO LOCATION 60 DEC
IF T0=0
Example:
MOV AR,
If T1=0
If T1=1
Example:

nonzero at the time this instruction is executed.

(PCp-7) = addr
(PC) = (PC)+2

JACCNO: JNZ 0ABH

If A#0
If A=0

:JUMP TO LOCATION 'AB' HEX
IF ACC VALUE IS I‘:IONZERO

[1100]o111]

The contents of the program status word are moved
to the accumulator.

(-A)¢ (PSW)

Jump to ‘RB1SET routine if PSW bank switch. bit 4.
is set

BSCHK: MOV A.PSW
JB4 RB1SET

‘MOVE PSW CONTENTS TO ACC
:JUMP TO '‘RB1SET' IF ACC
BIT 4 1

Move Register Contents to Accumulator
bt

8-bits of data are moved from working register r
into the accumulator

(A) = (Rr) r0-7
MAR: MOV A.R3 :MOVE CONTENTS OF REG 3
:TO ACC

MOV A,@R,

Move Data Memory Contents to Accumulator

Example:

The contents of the resident data memory location
addressed by bits 0-5 of register 'r' are moved to
the accumulator. Register '’ contents are unaffected.

(A)=— ((Rr)) r=0-1
Assume R1 contains 01110110

MADM: MOV A @R1 :MOVE CONTENTS OF DATA MEM
:LOCATION 54 TO ACC

MOV A,T Move Timer/Counter Contents to Accumulator

Example:

The contents of the timer/event-counter register
are moved to the accumulator.

(A)=(T)

Jump to “EXIT” routine when timer reaches '64’,

that is, when bit 6 set — assuming initialization 64,
TIMCHK: MOV AT :MOVE TIMER CONTENTS TO
;ACC

:JUMP TO EXIT' IF ACC BIT
6=1

JB6 EXIT

MOV PSW,A Move Accumulator Contents to PSW

[Troi[oi1y

The contents of the accumulator are moved into the
program status word. All condition bits and the
stack pointer are affected by this move.

(PSW) = (A)

Example: Move up stack pointer by two memory locations,
that is, increment the pointer by one.
INCPTR: MOV A PSW :MOVE PSW CONTENTS TO ACC
INC A JINCREMENT ACC BY ONE
MOV PSW,A ;MOVE ACC CONTENTS TO PSW
MOV R;,A Move Accumulator Contents to Register
1010
The contents of the accumulator are moved to
register ‘r'’.
(Rr) = (A) r=0-7
Example: MRA: MOV RO,A :MOVE CONTENTS OF ACC TO
JREG 0

,

MOV R;,#data Move Immediate Data to Register

1T011[1raryrg] [d7dgdsda |dadpdido

This is a 2-cycle instruction. The 8-bit value
specified by ‘data’ is moved to register ‘r'.

r=0-7

(Rr) = data

Examples: MIR4: MOV R4 #HEXTEN ;THE VALUE OF THE SYMBOL

HEXTEN' IS MOVED INTO
\REG 4
MIR 5: MOV R5,#P1"(R"R); THE VALUE OF THE
;EXPRESSION "PI*(R*R)
;IS MOVED INTO REG 5
'AD’' HEX IS MOVED INTO
;REG 6

MIR 6: MOV R6, #0ADH

MOV @R,,A Move Accumulator Contents to Data Memory

Example:

[1o10]oo0o0r

The contents of the accumulator are moved to the
resident data memory location whose address is
specified by bits 0-5 of register 'r'. Register 'r'
contents are unaffected.

((Rr)) = (A) r=0-1

Assume RO contains 11000111.
MDMA: MOV @R0,A 'MOVE CONTENTS OF ACC TO
.LOCATION 7 (REG 7)

MOV @Ry,

Sood =

#data Move Immediate Data to Data Memory

Examples:

MOV T,A

1011[000r] 07dedsds |dgdrdido]
This is a 2-cycle instruction. The 8-bit value

specified by ‘data’ is moved to the resident data
memory location addressed by register ‘r’, bits 0-5.

((Rr))=— data r=0-1

Move the hexadecimal value AC3F to locations 62-63.

MIDM: MOV RO,#62 :MOVE '62' DEC TO ADDR REG 0
MOV @R0,#OACH ;MOVE ‘AC’ HEX TO LOCATION 62
INC RO JINCREMENT REG 0 TO '63'
MOV @RO,#3FH ;MOVE '3F' HEX TO LOCATION 63

Move Accumulator Contents to Timer/Counter

Example:

==
01100010

The contents of the accumulator are moved to the

timer/event-counter register.

(M= (A)

Initialize and start event counter.

INITEC: CLR A :.CLEAR ACC TO ZEROS
MOV T,.A ‘MOVE ZEROS TO EVENT COUNTER
STRT CNT 'START COUNTER

MOVD A,Pp Move Port 4-7 Data to Accumulator

Example:

0000[11pp
This is a 2-cycle instruction. Data on 8243 port
‘p’ is moved (read) to accumulator bits 0-3.
Accumulator bits 4-7 are zeroed.

(AD-3) = (Pp)
(Ag4.7) = O

p=4-7

Note: Bits 0-1 of the opcode are used to represent ports
4-7. If you are coding in binary rather than assembly
language, the mapping is as follows:

Bits 1 0 Port
00 4
01 5
10 6
11 7

INPPT5: MOVD A,P5 ‘MOVE PORT 5 DATA TO ACC

;BITS 0-3, ZERO ACC BITS 4-7

MOVD Pp,A Move Accumulator Data to Port 4-7

Example:

[0011]11pp]

Data in accumulator bits 0-3 is moved (written) to
8243 port 'p". Accumulator bits 4-7 are unaffected.
(See NOTE above regarding port mapping.)

(Pp) = (Ag-3) p=4-7

Move data in accumulator to ports 4 and 5.

OUTP45: MOVD P4,A :MOVE ACC BITS 0-3 TO PORT 4
SWAP A {EXCHANGE ACC BITS 0-3 AND 4-7
MOVD P5,A :MOVE ACC BITS 0-3 TO PORT 5

MOVP A,@A Move Current Page Data to Accumulator

Example:

[[0r0[o0i1)

The contents of the program memory location addressed
by the accumulator are moved to the accumulator. Only

bits 0-7 of the program counter are affected, limiting

the program memory reference to the current page. The

program counter is restored following this operation

(PCo.7)= (A)
(A) = ((PC))

Note: This is a 1-byte, 2-cycle instruction. If it appears
in location 255 of a program memory page, (WA addresses
a location in the following page.

MOV128: MOV A #128 ;MOVE ‘'128' DEC TO ACC
MOVP A @A ;CONTENTS OF 129th LOCATION
:IN CURRENT PAGE ARE MOVED TO
JACC

MOVP3 A,@A Move Page 3 Data to Accumulator

111010011

This is a 2-cycle instruction. The contents of the
program memory location (within page 3) addressed by
the accumulator are moved to the accumulator. The
program counter is restored following this operation.

(PCo-7) = (A)
(PCg.10)= 011
(A)= ((PC))

Look up ASCII equivalent of hexadecimal code in table
contained at the beginning of page 3. Note that ASCII
characters are designated by a 7-bit code; the eighth
bit is always reset.
TABSCH: MOV A,#0B8H ;MOVE 'B8 HEX TO ACC (10111000)
ANL A #7FH LOGICAL AND ACC TO MASK BIT
;7 (00111000)
MOVP3 A,@A ;MOVE CONTENTS OF LOCATION
;'38' HEX IN PAGE 3 TO ACC
;(ASCII '8)
Access contents of location in page 3 labelled TAB1.
Assume current program location is not in page 3.
TABSCH: MOV A #LOW TAB1 ;ISOLATE BITS 0-7 OF LABEL
;ADDRESS VALUE
;MOVE CONTENTS OF PAGE 3
;LOCATION LABELED 'TAB?1'
;TO ACC

Example:

MOVP3 A, @A

MOVX A,@R, Move External-Data-Memory Contents to Accumulato[

[1000]000r]

This is a 2-cycle instruction. The contents of the
external data memory location addressed by register
‘r' are moved to the accumulator. Register ‘r’ contents
are unaffected.

(A)=— ((Rr)

Assurne R1 contains 01110110.
MAXDM: MOVX A @R1

r=0-1

Example:

:118 TO ACC

'MOVE CONTENTS OF LOCATION

- 22 -

OiL A #data Logical OR Accumulator With Immediate Mask

[0100[00711] [d7dedsds[d3dodyd

This is a 2-cycle instruction. Data in the accumulator
is logically ORed with an immediately-specified mask

(A) = (A) OR data
ORID: ORL A #X'

'OR' ACC CONTENTS WITH MASK
:01011000 (ASCII VALUE OF X'

ORL BUS,#data Logical OR BUS With Immediate Mask

This is a 2-cycle instruction. Data on the BUS port is
logically ORed with an immediately-specified mask. This
instruction assumes prior specification of an ‘'OUTL BUS,A’
instruction.

(BUS) = (BUS) OR data
ORBUS: ORL BUS,#HEXMSK

Example:

_97dgdsds | d3dp didg

;'OR' BUS CONTENTS WITH
;MASK EQUAL VALUE OF SYMBOL
I'HEXMSK'

ORL Pp, #data Logical OR Port 1 or 2 With Immediate Mask

1000 16pp Ld7dsd5d4ld3dz;d1ad‘

This is a 2-cycle instruction. Data on port ‘p’
is logically ORed with an immediately-specified mask

(Pp)= (Pp) OR data p=1-2

ORP1: ORL P1, #0FFH ;'OR’ PORT 1 CONTENTS WITH
;MASK ‘FF’' HEX (SET PORT 1
;TO ALL ONES)

ORLD Pp,A Logical OR Port 4-7 With Accumulator Mask

Data on port 'p’ is logically ORed with the digit
mask contained in accumulator bits 0-3.

(Pp)== (Pp) OR (Ag.3) p=4-7

ORP7: ORLD P7,A 'OR’ PORT 7 CONTENTS
;WITH ACC BITS 0-3

Example:

Example:

Example:

MOVX @R,A Move Accumulator Contents to External Data Memory

[1001]o00r]
This is a 2-cycle instruction. The contents of the
accumulator are moved to the external data memory

location addressed by register 'r'. Register 'r’
contents are unaffected.

((Rr)) =— A

Assume RO contains 11000111
MXDMA: MOVX @RO0.A

Example:
:MOVE CONTENTS OF ACC TO
;LOCATION 199 IN EXPANDED
:DATA MEMORY

NOP The NOP Instruction

[0000]0000

No operation is performed. Execution continues with
the following instruction.

Logical OR Accumulator With Register Mask

(6100 rrrr]

Data in the accumulator is logically ORed with the
mask contained in working register 'r’.

(A)= (A) OR (Rr) r=0-7

ORREG: ORL A,R4 ;’'OR" ACC CONTENTS WITH
:MASK IN REG 4

QR{. A,@R, . Logical QR Accumulatpr ,Wi,“?,Me',“PW Mask
[0100[000r]

Data in the accumulator is logically ORed with the mask
contained in the resident data memory location referenced by
register 'r', bits 0-5.

(A)=- (A) OR ((Rr))

ORDM: MOV RO0,#3FH
ORL A, @R0O

ORL AR,

Example:

r=0-1

Example: ;MOVE ‘3F' HEX TO REG 0

|IN LOCATION 63

;'OR" ACC CONTENTS WITH MASK

-OUTL BUS,A Output Accumulator Data to BUS

Data residing in the accumulator is transferred
(written) to the BUS port and latched. The latched
data remains valid until altered by another OUTL
instruction. Any other instruction requiring use

of the BUS port (except INS) destroys the contents

of the BUS latch. This includes expanded memory
operations (such as the MOVX instruction). Logical
operations on BUS data (AND, OR) assume the OQUTL
BUS A instruction has been issued previously.

(BUS) =-.(A)
OUTLBP: OUTL BUS,A

Example: ;OUTPUT ACC CONTENTS TO BUS

OUTL Pp,A Output Accumulator Data to Port 1 or 2

[0011]10pp

Data residing in the accumulator is transferred
(written) to port ‘p' and latched.

(Pp) = (A) p=i=2
Example: OUTLP: MOV A,R7 ;MOVE REG 7 CONTENTS TO ACC
OUTL P2A :OUTPUT ACC CONTENTS TO PORT 2
MOV A.R6 :MOVE REG 6 CONTENTS TO ACC
OUTL P1,A ;OUTPUT ACC CONTENTS TO PORT 1
RET Return Without PSW Restore
[1000]0011

This is a 2-cycle instruction. The stack pointer

(PSW bits 0-2) is decremented. The program counter
is then restored from the stack. PSW bits 4-7 are

not restored.

(SP) = (SP)-1
(PC) == ((SP))

RETR Return With PSW Restore

This is a 2-cycle instruction. The stack pointer is
decremented. The program counter and bits 4-7 of the
PSW are then restored from the stack. Note that RETR
should be used to return from an interrupt, but

should not be used within the interrupt service

routine as it signals the end of an interrupt routine.

(SP)=— (SP)-1
(PC)=— ((SP))
(PSW 4-7) = ((SP))

RL A Rotate Left Without Carry

Example:

‘1110 Gd 1

The contents of the accumulator are rotated left one
bit. Bit 7 is rotated into the bit 0 position.
(An+1)= (An)

(AC)=— (A7) n=0-6

Assume accumulator contains 10110001
RLNC: RL A :NEW ACC CONTENTS ARE 01100011

RLC A Rotate Left Through Carry

Example:

KRN CERE]

The contents of the accumulator are rotated left one
bit. Bit 7 replaces the carry bit; the carry bit is
rotated into the bit O position.

(An+1)= (An)

n=0-6
(A0) = (C)
(C) = (A7)

Assume accumulator contains a ‘signed’ number;
isolate sign without changing value.

RLTC: CLRC :CLEAR CARRY TO ZERO
RLC A :ROTATE ACC LEFT, SIGN
:BIT (7) IS PLACED IN CARRY
RR A :ROTATE ACC RIGHT — VALUE

(BITS 0-6) IS RESTORED,
:CARRY UNCHANGED, BIT 7
;IS ZERO

RR A Rotate Right Without Carry

Example:

The contents of the accumulator are rotated right

one bit. Bit 0 is rotated into the bit 7 position

(An) = (An+1) n=0-6

(A7) = (AO)

Assume accumulator contains 10110001.

RRNC: RR A :NEW ACC CONTENTS ARE 11011000

RRC A Rotate Right Through Carry

00 a0t

The contents of the accumulator are rotated right one
bit. Bit 0 replaces the carry bit; the carry bit is
rotated into the bit 7 position.

(An) = (An+1) n=0-6
(A7)= (C)
(C)= (A0)
Example: Assume carry is not set and accumulator contains
10110001.
RRTC: RRC A :CARRY IS SET AND ACC
; ;CONTAINS 01011000
SEL MBO Select Memory Bank 0
0101
PC bit 11 is set to zero on next branch instruction.
All references to program memory addresses fall within
the range 0-2047.
(DBF)= 0
Example: Assume program counter contains 834 Hex and the

carry bit is set.

SEL MBO
JC $+20

;SELECT MEMORY BANK 0
;IF C=1, JUMP TO LOCATION
;48 HEX

SEL MB1

“ 0.

Select Memory Bank 1

SEL RBO

PC bit 11 is set to one on next branch instruction.
All references to program memory addresses fall
within the range 2048-4095.

(DBF) =1
Select Register Bank 0

SEL RB1

PSW bit 4 is set to zero. References to working
registers 0-7 address data memory locations 0-7.
This is the recommended setting for normal program
execution.

(BS)=0

Select Register Bank 1

Example:

PSW bit 4 is set to one. References to working registers
0-7 address data memory locations 24-31. This is the
recommended setting for interrupt service routines,
since locations 0-7 are left intact. The setting of

PSW bit 4 in effect at the time of an interrupt is
restored by the RETR instruction when the interrupt
service routine is completed.

(BS) =1

Assume an external interrupt has occurred, control

has passed to program memory location 3, and PSW bit
4 was zero before the interrupt.
LOC3: JNI INIT WJUMP TO ROUTINE 'INIT' IF
JINTERRUPT INPUT IS ZERO

;MOVE ACC CONTENTS TO
;LOCATION 7

;SELECT REG BANK 1

;MOVE ‘FA' HEX TO LOCATION 31

INIT: MOV R7,A

SEL RB1
MOV R7 #0FAH

SEL RBO

;SELECT REG BANK 0
MOV A R7 ;RESTORE ACC FROM LOCATION 7
RETR ;RETURN — RESTORE PC AND PSW

STOP TCNT Stop Timer/Event-Counter

Example:

[0110f0101]

This instruction is used to stop both time accumulation
and event counting.

Disable interrupt, but jump to interrupt routine after
eight overflows and stop timer. Count overflows in
register 7.

START: DIS TCNTI :DISABLE TIMER INTERRUPT

CLR A \CLEAR ACC TO ZEROS
MOV T.A MOVE ZEROS TO TIMER
MOV R7.A MOVE ZEROS TO REG 7
STRT T 'START TIMER
MAIN: JTF COUNT ;JUMP TO ROUTINE ‘COUNT'
JIF TF=1 AND CLEAR TIMER FLAG
JMP MAIN CLOSE LOOP
COUNT: INC R7 JINCREMENT REG 7
MOV A,R7 :MOVE REG 7 CONTENTS TO ACC
JB3 INT :JUMP TO ROUTINE 'INT' IF ACC
/BIT 31S SET (REG 7-8)
JMP MAIN ;OTHERWISE RETURN TO ROUTINE
‘MAIN
INT: STOP TCNT :STOP TIMER
JMP 7H ‘JUMP TO LOCATION 7 (TIMER)

JINTERRUPT ROUTINE

$TRT CNT Start Event Counter

Example:

0100[0101)

The test 1 (T1) pin is enabled as the event-counter
input and the counter is started. The event-counter
register is incremented with each high-to-low transition
on the T1 pin.

Initialize and start event counter. Assume overflow
is desired with first T1 input.

STARTC: EN TCNTI JENABLE COUNTER INTERRUPT

MOV A #0FFH ;MOVE 'FF' HEX (ONES) TO
;ACC

MOV T,A ;MOVE ONES TO COUNTER

STRT CNT JENABLE TIAS COUNTER

JINPUT AND START

STRT T Start Timer

Example:

Timer accumulation is initiated in the timer register.
The register is incremented every 32 instruction cycles.
The prescaler which counts the 32 cycles is cleared
but the timer register is not.

Initialize and start timer.

STARTT: CLR A ,CLEAR ACC TO ZEROS

MOV T,A :MOVE ZEROS TO TIMER
EN TCNTI ;ENABLE TIMER INTERRUPT
STRT T ;START TIMER

SWAP A Swap Nibbles Within Accumulator

Bits 0-3 of the accumulator are swapped with bits
4-7 of the accumulator.

(As-7) 5 (Ap-3)

Example: Pack bits 0-3 of locations 50-51 into location 50.
PCKDIG: MOV RO, #50 ;MOVE '50' DEC TO REG 0
MOV R1, #51 ;MOVE ‘51" DEC TO REG 1
XCHD A,@R0 ;;EXCHANGE BITS 0-3 OF ACC
;AND LOCATION 50
SWAP A ;SWAP BITS 0-3 AND 4-7 OF ACC
XCHD A @R1 ;EXCHANGE BITS 0-3 OF ACC AND
! ;LOCATION 51
MOV @RO,A ;MOVE CONTENTS OF ACC TO
;LOCATION 50
XCH A,R, Exchange Accumulator-Register Contents
[oo10]rrrr]
The contents of the accumulator and the contents of
working register 'r' are exchanged.
A1 (R r=0-7
Example: Move PSW contents to Reg 7 without losing
accumulator contents.
XCHAR7: XCH A ,R7 ;EXCHANGE CONTENTS OF REG 7
;AND ACC
MOV A, PSW ;MOVE PSW CONTENTS TO ACC
XCH A,R7 :EXCHANGE CONTENTS OF REG 7
;AND ACC AGAIN
XCH A,@R; Exchange Accumulator and Data Memory Contents
The contents of the accumulator and the contents of
the resident data memory location addressed by bits
0-5 of register 'r' are exchanged. Register 'r'
contents are unaffected.
(A) S — ((R) r=0-1
Example: Decrement contents of location 52.

DEC52: MOV RO,#52 :MOVE '52' DEC TO ADDRESS

JREG 0

XCH A, @RO ;EXCHANGE CONTENTS OF ACC
;AND LOCATION 52

DEC A ;DECREMENT ACC CONTENTS

XCH A,@R0 JEXCHANGE CONTENTS OF ACC

;AND LOCATION 52 AGAIN

XCHD A,@R,

- 2 e

Exchange Accumulator and Data Memory 4-Bit Data

0o011j000r

This instruction exchanges bits 0-3 of the accumulator
with bits 0-3 of the data memory location addressed by
bits 0-5 of register 'r'. Bits 4-7 of the accumulator,

bits 4-7 of the data memory location, and the contents
of register '’ are unaffected.

(Ag.3) “= ((Rr0-3)) r=0-1

Example: Assume program counter contents have been stacked in
locations 22-23
XCHNIB: MOV RO0,#23 :MOVE 23 DEC TO REG 0
CLR A .CLEAR ACC TO ZEROS
XCHD A @R0O EXCHANGE BITS 0-3 OF ACC
:AND LOCATION 23 (BITS 8-11
;OF PC ARE ZEROED. ADDRESS
\REFERS TO PAGE 0)
XRL A,R; Logical XOR Accumulator With Register Mask
71 L Rl Tere
Data in the accumulator in EXCLUSIVE ORed with the mask
contained in working register 'r’,
(A) = (A) XOR (Rr) r=0-7
Example: XORREG: XRL AR5 " XOR' ACC CONTENTS WITH

‘MASK IN REG 5

XRL A,@R, Logical XOR Accumulator With Memory Mask

Example:

[1701]ooo0r
Data in the accumulator is EXCLUSIVE ORed with the mask

contained in the data memory location addressed by
register 'r’, bits 0-5.

(A)=— (A) XOR ((Rr)) r=0-1

XORDM: MOV R1, #20H :MOVE '20' HEX TO REG 1
XRL A @R1 XOR' ACC CONTENTS WITH MASK
[IN LOCATION 32

XRL A,#data Logical XOR Accumulator With Immediate Mask

Example:

[1101]0011] [d7dgdsds|dadpdidg)
This is a 2-cycle instruction. Data in the accumulator
is EXCLUSIVE ORed with an immediately-specified mask.

(A) = (A) XOR data

XORID: XOR A #HEXTEN :XOR CONTENTS OF ACC WITH
'MASK EQUAL VALUE OF SYMBOL
VHEXTEN'

INSTRUCTION SET SUMMARY

-5 -

Mnemonic Description Bytes Cycle Mnemonic Description Bytes Cycles
o
ADD A, R Addt reqister to A 1 1 E CALL Jump to subroutine 2 2
ADD A, @R Add data memory to A 1 1 g RET Return 3 2
ADD A, :data Add immediate to A 2 2 .E::. RETR Return and restore status 3 2
ADDC A, R Add register with carry 1 1 (%]
ADDC A, GR Add data memory with carry 1 1
ADDC A, -data Add immediate with carry 9 9 CLRC Clear Carry 1 1
ANL A, R And register to A 1 1 S CRLC Complement Carry 1 1
ANL A, ©R And data memory to A 1 1 g CLEFD Clear Flag 0 1 1
ANL A, “data And immediate to A) 2 & CPL FO Complement Flag O 1 1
ORLA,R Or register to A 1 1 CLR F1 Clear Flag 1 1 1
.B. ORL A, @R Or data memory to A 1 1 CPL F1 Complement Flag 1 1 1
'5 ORL A, =data Or immediate to A 2 2
g XRLA,R Exclusive Or register to A 1 1 MOV A R Move rbiterio A :)
o XRLA, @R Exclusive or data memory to A 1 1 MOV A’ @R NMavs A
= XRL A, -data Exciusive or immediate to A 2 2 J e va ememaTy Lo ! :
INC A b naaiA 1 - MOV A, =data Move immediate to A 2 2
DEC A Decrement A 1 1 Yoy ua Viove 8810 todiston ‘. :
CLR A Clait A 1 1 MOV @R, A Move A to data memory 1 1
CPLA Eaileenia 1 1 = MOV R, =data Move immediate to register 2 £
DA A Decimal Adiust A 1 1 g MOV @R, =data Move immediate to data memory 2 2
SWAP A Swap nibbles of A 1 1 2 MOV oW MaveEsW o /s ; !
RLA HotateA laft 1 1 g MOV PSW, A Move A to PSW 1 1
RLC A Rotate A left through carry 1 1 o AGha i Exchange A\ and register 1 !
RR A Rotate A right 1 1 ;((E:EA)';DF: R Exc:unge 5 Ialn:i di:l:me(r’nmy‘ ! !
% il WG < , @ xchange nibble of A and register 1 1
Alas Hotate A noly tuchgiieniey : ! MOVX A, @R Move external data memory to A 1 2
MOVX @R, A Move A to external data memory 1 2
INA, P Input port to A 1 2 MOVP A, @A Move to A from current page 1 2
OUTLP, A Output A to port 1 9 MOVP3 A, @A Move to A from Page 3 1 2
ANL P, :=data And immediate to port 3 @
§ IONRSLAP,'B.S;'a ﬁ"p:.u":gzds'a:: :) Sk ? 3 5 MOV A, T Read Timer/Counter . 1
© QuTLBUS, A Olutout A to BUS 1 5 2 MOV T, A Load Timer/Counter 1 1
g_ ANL BUS, “data And immediate to BUS 2 2 3 SIRTT Start Timer ! 1
£ ORL BUS, “data Or immediate to BUS 2 2 9 STRLCNT.. o SRt Soudler ! :
MOVD A, P Input Expander port to A 1 2 E STOE TCNT S_top Tlrn‘er/Counter ! !
MOVD P, A OUinul A ta Expander port 7 2 = EN TCNTI Enable Timer/Counter Interrupt i 1
ANLD P, A Aad A 1D Exvinde port 7 2 DIS TCNTI Disable Timer/Counter Interrupt 1 1
ORLD P, A Or A to Expander port 1 2
EN I Enable external interrupt 1 1
g INC R Increment register 1 1 = DIS | Disable e)fternal interrupt 1 1
Z INC @R Increment data memory 1 1 g SEL RBO Select register bank 0 1 1
g DECR Decrement register 1 1 = SEL RB1 Select register bank 1 1 3
« O SEL MBO Select memory bank 0 1 1
SEL MB1 Select memory bank 1 1 1
JMP addr Jump unconditional 2 2 ENTO CLK Enable Clock output on TO i 1
JMPP @A Jump indi:ect 1 2
DJINZ R, addr Decrement register and test 2 2 E
JC addr Jump on Carry = 1 2 2 HOP No Operation ! 2
JNC addr Jump on Carry =0 2 2
J Z addr Jump on A Zero 2 2
JNZ addr Jump on A not Zero 2 2
§ JTOaddr Jump on TO = 1 2 2
§ JUNTO addr Jumpon TO - 0 2 2
@ JT1 addr JumponT1 1 2 2?2
JINT 1 addr JumponT1 0O 2 2
JFO addr Jumpon FO =1 2 2
JF 1 addr JumponF1=1 2 2
JTF addr Jump on timer flag 2 2
JNI addr Jump on INT = 0 2 2
JBb addr Jump on Accumulator Bit 2 2

- 26 -

3. ASSEMBLER DIRECTIVES

This chapter describes the assembler directives used to
control the 8048 assembler in its generation of object
code. These directives are written in the same format as
8048 instructions, in general, and can be interspersed
throughout your assembly language program.

Unlike assembly language instructions, however, they
produce no executable object code.

Assembler directives can be divided functionally as follows;

o Location counter control
- ORG

o Symbol definition
- EQU
- SET

o Data definition
- DB
- DW

o Memory reservation
- DS

0 Assembler termination
- END

One notable format difference between assembler directives

and 8048 instructions involves the 'lable' field. This field
is always optional in 8048 instructions. The same is generally
true of assembler directives, but two directives (EQU, SET)
require the name of the symbol to be present in the label
field.

LOCATION COUNTER CONTROL

The location counter performs the same function for the
assembler as the program counter performs during program
execution. It tells the assembler the next memory location
available for instruction or data assembly.

The location counter can be set by the ORG (origin) directive.
See also the discussion of the END directive in the section
'Assembler Termination,' later in this chapter.

ORG Directive

Label Opcode Operand
optional ORG expression.

.

The location counter is set to the value of 'expression',
which must evaluate to a valid 12-bit program memory address.
If 'expression' is a symbol, the symbol must be previously
defined. The next machine instruction or data item is
assembled at the address specified. If no ORG is included
before the first instruction or data byte in your program,
assembly begins at location zero.

Your program can include any number of ORG statements.
Multiple ORGs need not be listed in ascending order, but
failure to do so creates potential memory overlap problems.

Example:

PAG1 ORG OFFH ;ORG ASSEMBLER TO LOCATION
; "FF'HEX (255 DEC)

SYMBOL DEFINITION

Symbol names appearing as labels in 8048 instructions are
assigned values automatically during the assembly process.
The value in this case is the value in the location counter
when the labeled instruction is assembled.

Other symbols are defined and assigned arbitrary values
using the EQU and SET directives. Symbols defined using

EQU cannot be redefined during assembly; those defined by
SET can be assigned new values by subsequent SET directives.

EQU Directive

Label - Opcode Operand
name EQU expression

The symbol 'name' is created and assigned the value of
'expression'. This 'name' cannot appear in the label field

of another EQU or SET directive, that is, it is not redefinable.
Example:

ONES EQU OFFH sCREATE SYMBOL 'ONES' WITH
sBINARY VALUE 11111111

SET Directive

Label Opcode Operand
name SET expression

The symbol 'name' is assigned the value of 'expression'.
Wherever the symbol name is encountered in the assembly,
this value is used unless 'name' is assigned a new value
by another SET directive.

- D8 o

DATA DEFINITION

The DB (define byte) and DW (define word) directives enable
you to specify data in your program. Data can be specified
in the form of 8-bit or 16-bit values, or as a text string.

DB Directive

Label Opcode Operands
optional DB expression(s) or string (s)

The operand field of the DB directive can contain a list

of expressions and/or text strings with the list items
separated by commas. The list can contain up to eight total
elements, but elements containing expressions can reduce this
maximum allowance.

Expressions must evaluate to 1-byte (8-bit) numbers. This
provides a range of -256 to +255 (all ones or all zeroes in
the high-order byte of the internal representation).

Strings can extend over an arbitrary number of bytes. The
bytes assembled for the DB directive are stored consecutively
in available memory starting at the address in the location
counter.

Note: Do not mix expressions and strings in one DB or DW
directive, this will cause errors.

Example:
DATA DB 'STRING 1', "“STRING 2'
QUTE DB 'THIS TS A QUOTH:!''
NUM DB A 5 €

DW Directive

Label Opcode Operands
optional DW expression(s) or string constant(s)

The operand field of the DW directive can contain a list of
expressions and/or 1-byte or 2-byte string constants. List
items are separated by commas. The list can contain up to
eight total elements, but elements containing expressions
can reduce this maximum allowance. '

Expressions must evaluate to 1-word (16-bit) numbers.

The high-order eight bits of the 16-bit value are assembled
at the address in the location counter; the low order eight
bits are assembled at the next higher location.

-8 .

Strings are limited to one or two characters. In the case
of a single character string, the high-order eight bits are
filled with zeros.

Examples:

ADDR Dw FIRST, LAST
PAGE Dw 0,0100H,0200H,0300H
STRS Dw A8 TCD!

MEMORY RESERVATION

A block of program memory can be reserved using the DS
(define storage) directive. No data is assembled into
these locations and no assumptions can be made about their
initial contents when your program is loaded.

DS Directive

Label Opcode Operand
optional DS expression

'Expression' specifies the number of locations to be reserved
for data storage. This block of memory locations is reserved
by incrementing the location counter by the value of
'expression'. This value must be absolute. Any symbol
appearing in the operand field must be previously defined.

If the optional label is present, it is assigned the starting
value of the location counter (before incrementing), and
thus references the starting address of the rserved block.
If the value of 'expression' is zero, no memory is reserved,
but the label is assigned the current value of the location
counter.
Example:

TTYB DS 72 sRESERVE 72 LOCATIONS AS A

s TERMINAL OUTPUT BUFFER.

ASSEMBLER TERMINATION

The END directive terminates assembler execution.

END Directive

Label Opcode Operand
optional END expression

-~ 35 o

The END directive identifies the end of the source program
and terminates each pass of the assembler. Only one END
directive can appear in your program and it must be the
last source line of the program.

If 'expression' is specified in the operand field, its
value is used as the program execution starting address.
If no 'expression' is given, the starting address is zero.

Example:

END STRT sEXECUTION BEGINS AT THE
s ADDRESS LABELED 'START'

NOTE: After the END directive assembly line should be

inserted to let the assembler print the END-directive-
line. This is a known anomally in this assembler.

PRINTER CONTROL

BJECT Directive

Label Opcode Operand
————— EJE R

The "EJECT" directive ejects a page of the listing, the
remainder of the listing to be continued at the top of
nextpage. :

SPACE Directive

Label Opcode Operand
————— SPC expression

The "SPACE" directive causes a number of blank lines to

be printed before the listing continues.

"Expression" must result in an absolute value less or equal
to 57 but larger than zero.

