B

$5.00

SIGNETICS
INSTRUCTOR

CASSETTE

Sinotics

2650 INSTRUCTOR

oo
MBIy
y

Silnotics

a subsidiary of U.S. Philips Corporation

§ Signetics Corporation:
811 East Arques Avenue:

T A T AATA '






$5.00

SIGNETICS
INSTRUCTOR 50
USER GUIDE

A AR DR N b A B S i

Siljnotics

P

2650 INSTRUCTOR

T A e Ao e e

PURRRRPRSTE

SiNOLcs

a subsidiary of U.S. Philips Corporation

Signetics Corporation

811 East Arques Avenue
Sunnyvale, California 94086
Telephone 408/739-7700




Signetics reserves the right to make changes in the products contained in this manual in
order to improve design or performance and to supply the best possible products.
Signetics also assumes no responsibility for the use of any circuits described herein,
conveys no license under any patent or other right, and makes no representations that the
circuits are free from patent infringement. Reproduction of any portion hereof without
the prior written consent of Signetics is prohibited.

Copyright November 1977, Signetics Corporation



PREFACE

This manual provides tutorial and reference information

on the Signetics INSTRUCTOR 50--a complete, fully assem-
bled and low cost microcomputer system. The INSTRUCTOR 50's
computing power is enhanced by the Signetics 2650 Micro-
processor which is described in detail in the 2650 manual
accompanying this document.

INSTRUCTOR 50 is designed to assist you in learning pro-
gramming and in writing, debugging, and testing the pro-
grams you develop. There is enough information here to

get you started, whether or not you have ever written a
program before. The only prerequisite is a familiarity
with the 2650 microprocessor. Readers who are not familiar
with the 2650's hardware structure and instruction set

should read the 2650 Microprocessor Manual prior to using
the INSTRUCTOR 50.

iii






CONTENTS

PREFACE .

1.

INTRODUCTION

Power On and Initial Display
Operating Modes .

Keying in and Enterlng Values
Correcting Entry Errors

The Prompt Light

Entering and Executing a Slmple Program .

SYSTEM OVERVIEW .

Introduction .
2650 Microprocessor .

2656 System Memory Interface (SMI)

Keyboards .

Display Panel .

Audio Cassette Interface
S100-Compatible Expansion Bus
Monitor Firmware .
Debugging Aids .

On-Board User I/0

Forced Jump Logic

Memory and I/0 Organlzatlon
Clock Circuitry .

Internal Power Supply

CONTROLS AND INDICATORS

Introduction . .
Function Control Keyboard .
Hexadecimal Keyboard . .
Eight-Digit Hex Display Panel
Port Data Input Switches

Port Data Indicators

Direct/Indirect Interrupt Sw1tch

Port Address Select Switch .
FLAG Indicator .
RUN Indicator

COMMAND DESCRIPTIONS

Introduction .

Display and Alter Reglsters
Display and Alter Memory .
Fast Patch

Display and Alter Program Counter

Breakpoint

STEP .
Write Cassette
Adjust Cassette

e R S R R SR RS Ji-\ WWWwWwwLWwWwWwWwWw

[g0]
T B
PLOLWNHH )

e
]

N
| I I I B R R |

w NNNNNNITDNNNNNNN

!
HEHEEOOAPRNDHE A PArArPprpLLOEE NNNNULuummwouwwwwRER = =

AAENO



CONTENTS (cont.)

Page
Read Cassette . . . . . « v v v « « « « « i v o o . . . 4L-18
2« Y Al
Reset . e 2 !
Error Messages 4-22
USING THE INSTRUCTOR 50 . 5-1
Restrictions on Using the 2650 Instruction Set 5-1
Using Interrupts . 5-2
Using the I/0 Switches and nghts 5-6
FLAG and SENSE I/O . 5-6
Non-Extended I1/0 5-7
Extended I/0 . . 5-7
Memory Mapped 1/0 e e e e e e e e 5-7
Calling Monitor Subroutines . . . . . . . . . . . 5-8
MOVE Subroutine . 5-9
DISPLAY Subroutine . . 5-11
USER DISPLAY Subroutine 5-13
NIBBLE Subroutine . . 5-15
INPUT DATA Subroutine . . . . . . . . . . . . . . . 2-17
MODIFY DATA Subroutine . . . . . . . . . . . . . . 2-20
Jumper Options . . - R
Jumper A - Interrupt Selectlon N R
Jumper B - S100 Clock Select e e e e .. ...o.05-23
Jumper C - Power Source Select . . - R )
Jumper D - Cassette Output Selection 5-26
SYSTEM EXPANSION . 6-1
Introduction 6-1
THEORY OF OPERATION 7-1
Introduction . 7-1
Basic Concept . . 7-1
Detailed Block Dlagram Descrlptlon . 7-3
. The Microcomputer . . 7-3
INSTRUCTOR 50 Memory Allocation 7-5
Parallel I/0 Port . . . 7-8
Keyboard and Display Loglc 7-8
The Cassette Interface . 7-11
Interrupt Logic . 7-13
Forced Jump Logic . . . . 7-13
Power On (POR) or MON Key Depre331on . 7-14
Breakpoint Detection . . . 7-14
Single Step . . . e e e R X
S100 Bus Interface . . . . . Y A
System Power . . . . Y £

The USE Monitor

~
1

=

(o))



APPENDICES

Moo w

CONTENTS (cont.)

Signetics 2650 Microprocessor Manual
INSTRUCTOR 50 System Schematics

USE Program Listing

ASCII CONVERSION TABLE

Decimal to Hex Conversion Table

vii

Fl,U(")UJ}
I e



Figure No.

'—l
=

NN NN NN UL NN
o W NN

LIST OF ILLUSTRATIONS

Title

Flowchart for Binary Counter Program
INSTRUCTOR 50 Basic Block Diagram
INSTRUCTOR 50 Display Font

Basic USE Monitor Flowchart

Memory and I/0 Organization

Controls and Indicators

Jumper Locations

Basic INSTRUCTOR 50 Architecture

INSTRUCTOR 50 Detailed Block Diagram

INSTRUCTOR 50 Memory Map
Keyboard Layout

Cassette Record Waveforms

USE Command and Routine Executive

viii

Page
1-4
2-2
2-4
2-6
2-8
3-1
5 24
7 2
7-4
7-7
7-10
7-12
7-17



1. INTRODUCTION

Welcome aboard the INSTRUCTOR 50--a unique and powerful training
tool designed to introduce you to the world of microcomputers
in the shortest possible time.

INSTRUCTOR 50 is for computer hobbyists, students, engineers or
anyone who wants to learn how to use a microcomputer the easy
way, without having to face the drudgery of a long and tedious
training program.

INSTRUCTOR 50 is a stand-alone microcomputer based on the Signetics
2650 microprocessor. It includes everything that you need to
write, run, and debug machine-language programs. A 12-key Function
Control Keyboard and a 16-key Hexadecimal Keyboard are used to
enter data and perform various system functions associated with

the INSTRUCTOR 50. The INSTRUCTOR 50 User System Executive

(USE) monitor program guides you in the use of the svstem by dis-
playing prompting messages and responses on an eight-digit LED
display. All facilities required for program development are

built into INSTRUCTOR 50 -- you don't need anything else to start.

Before getting into the details of what makes the INSTRUCTOR 50
tick, let's first take a short shakedown cruise and write a few
simple programs.

Power On and Initial Display

To apply power to the INSTRUCTOR 50, connect the power cord into
the rear panel receptacle, and insert the power pack into any
standard 115 VAC domestic wall socket. The INSTRUCTOR 50 does

not have a power ON/OFF switch. The initial display is the message
HELLO, indicating that the INSTRUCTOR 50 is in the monitor mode

and ready for use. If the HELLO message does not appear, depress
the MON key to initialize the INSTRUCTOR 50. Unplug the power
pack to turn the INSTRUCTOR 50 off.

Operating Modes

The INSTRUCTOR 50 has two basic modes of operation, the MONITOR
mode and the EXECUTION mode. The MONITOR mode is entered
automatically on power up or by depressing the MON key on the
function control keyboard. The monitor responds by displaying
HELLO. While in the MONITOR mode, you may:

e Enter and alter a program.
e Read in a previously saved program from audio cassette tape.

e Display and alter the contents of the microcomputer's

general-purpose working registers and/or Program Status
Word (PSW).

e Examine and alter the contents of memory locations.

1-1



Examine and alter the contents of the Program Counter.
Specify and examine a program breakpoint.
Step through a program one instruction at a time.

Save a program on cassette tape.

The EXECUTION mode is entered by depressing the RUN key, the

STEP key, or the RESET (RST) key on the function control keyboard.
Depressing the RUN key terminates the MONITOR mode and causes
program execution to begin at the address specified in the Pro-
gram Counter. Depressing the STEP key causes the INSTRUCTOR 50
to execute a single instruction and return to the MONITOR mode.
When the RST key is depressed, current INSTRUCTOR 50 activity is
terminated, and the processor begins program execution at address
H'0000"'.

Keying in and Entering Values

The INSTRUCTOR 50 uses the hexadecimal number system with a base
of 16 for entering values. The term '"hexadecimal', or hex for
short, refers to a shorthand method of expressing a group of four
consecutive binary bits by a single digit. Valid digits range
from 0 through F, where F represents the highest decimal value
(15). See Table 1.1. '

Since the INSTRUCTOR 50 uses 8-bit bytes, two hexadecimal digits
can be used to specify a byte. The smallest hexadecimal number
is 0016 (000000002) and the largest is FF16 (111111112). The

INSTRUCTOR 50 still reads only binary numbers; hexadecimal is
the user's shorthand, not the microcomputer's. ’

Decimal Hexadecimal Binary

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101 .
1110
1111

Nelo ol RO R e JULH SN e

=
=

=
N
HEOQEWPOONCUPWNFO

el
Ve W

Table 1.1:Relationship among decimal, hexa-
decimal, and binary systems.

1-2



To understand hex notation, take a decimal number like 10710.

In binary notation, this becomes 11010112. Breaking this number
into two 4-bit nibbles (half-bytes), you get 01102 and 10112.
The first and most-significant nibble is equal to 610, while the
second and least-significant nibble is equal to 1110. Thus, in
hexadecimal notation, 107lO becomes 6B16 or H'6B'. To convert

from decimal to hexadecimal, or vice versa, you must first convert
the number into binary and then into hexadecimal as previously
illustrated.

Address and data parameters are entered into the INSTRUCTOR 50

via the hexadecimal keyboard using the hex notation described
earlier. When entering an address, you may enter as many &s four
hex digits starting with the most significant digit of the address.
Leading zeroes need not be entered; if less than four digits are
entered, the leading digits are automatically zeroed. Data values
consist of one or two hex digits, with the most-significant digit
entered first. If only one digit is entered, the most-significant
digit is automatically zeroed.

Correcting Entry Errors

The numbers keyed in appear in the address/data display field and
can be edited prior to depression of a function key by simply key-
ing in the correct characters. The display shifts to the left
each time a new character is entered, and characters shifted out
of the field are disregarded. Only the last digits entered are
retained, so that an error in entry can be corrected by entering
the correct data.*

For example, if vou were entering an address and you depressed
121 instead of the correct value of 120, the display would read:

LAd. = 121

To recover from this error, simply key in the correct value by
depressing the following hex keys:

(o] [11 [2] [oO]

The correct value would then be displayed as indicated below:
Ad. = 0120

The Prompt Light

A dot or period in the left-most position of the display (e.g.,
.Ad. =) is a prompt signal. It indicates that the INSTRUCTOR 50
is ready to accept a data or address value.

*

Data values entered during operation in the FAST PATCH command
mode cannot be corrected in this manner. See description of
the FAST PATCH command in Section 4 .

1-3



“Entering and Executing a Simple Program

To demonstrate the use of the INSTRUCTOR 50, let's write a
simple program, enter it, and execute it. Prior to writing
the program, we must decide what task or operation we want the
program to perform.

Let's say we want to "show the operation of an 8-bit binary
counter on the INSTRUCTOR 50's output port indicator LEDs".
The flowchart for performing this task is shown in Figure 1.1.

(START,

\i

CLEAR
REGISTER

.,,V
OUTPUT

REGISTER
TO PORT

ADD ‘1" TO
REGISTER

Figure 1.1: Flowchart for Binary Counter Program

The DELAY block shown in the flowchart provides a time interval
between new values of the binary count in order to observe the
counting action on the port indicators. This can be implemented
in several ways, depending on the delay required.* We will use
a double-loop technique, with the outer loop counting the num-
ber of excursions through the inner loop.

The next step is to select registers for the binary counter and
the delay loop counters, and to select an output port for the
display operation. Let's arbitrarily make the following assign-
ments:

*
See Signetics 2650 Applications Note AS52 - General Delay Routines.

1-4



Register 0
Register 1
Register 2
Port D

We are now ready to write

Binary counter

Outer loop counter
Inner loop counter
Output display port

the program:

ADDRESS HEX VALUE LABEL INSTRUCTION COMMENTS
00 75,11 START CPSL C + RS Operations without
Carry, Reg. bank 0
02 20 EORZ,RO Clear RO
03 FO ouT WRTD, RO Output RO to D
04 05,20 LOOP1 LODI,R1 Hrzg' Initialize outer loop
06 06,20 LOOP2  LODI,R2 H'P0' Initialize inner loop
08 FA,7E SELF BDRR,R2 SELF Count inner loop
0A F9,7A BDRR,R1 LOOP2 Count outer loop
0cC 84,01 ADD1,R0O H'01l' Add 1 to RO
OE 1F,00,03 BCTA,UN OUT Go back to output

Let's begin entering the p
PATCH command, which is us
The FAST PATCH mode is ena
by the [F] key:

rogram using the INSTRUCTOR 50's FAST
ed for entering long hex data strings.
bled by depressing the [REG] key followed

KEY DISPL
[MON] HELLO
[REG] [F] .Ad.

[0] [ENT/NXT] .0000
[71 (5] .0000
(11  [1] .0001
(2] [0] .0002
[1] [F] .000E
[0] [oO] .000F
(o1 [3] .0010
[ENT/NXT] 0010

We will now verify correct
MEMORY command:

AY COMMENTS
Enter monitor mode
= Enter FAST PATCH
Enter starting address
75 Begin program entry.
11
20
1F
00
03
03 Terminate FAST PATCH

entry by using the DISPLAY & ALTER

KEY DISPLAY COMMENTS

[MEM] .Ad. = Display and Alter memory

[0] [ENT/NXT] .0000 75 Address entered, data displayed
[ENT/NXT] .0001 11

[ENT/NXT] .0002 20

[ENT/NXT] .0003 FO

[ENT/NXT] .0010 03 Verification complete

1.5



If an error is detected during verfication, it can be corrected
by entering the correct value before depressing the [ENT/NXT] key.

For example:

KEY

[ENT/NXT]
[F] [0]
[ENT/NXT]

We are now ready to exercise the program.

DISPLAY
.0003 F8
.0003 FO
.0004 05

COMMENTS

Error. Data should be FO.
Correct data entered.
New data deposited.

Before proceeding,

make certain that the Interrupt Select Switch which is accessible
from the bottom side of the case is in the keyboard position.

The Port Address Select Switch is placed in
the NON-EXTENDED Port D position, and, since the program begins at
address zero, the [RST] key is depressed to initiate execution. The
program operation can be observed on the I/O port indicators.

(towards the center)

We can use the INSTRUCTOR 50 facilities to change the program para-
meters or to observe the internal operation of the program. For
example, to change the delay time, we can change the delay con-

stant at address H'05'

KEY

[MON]

[MEM]

[5] [ENT/NXT]
[4] [0]
[ENT/NXT]
[RST]

DISPLAY
HELLO
Ad. =
.0005 20
.0005 40
.0006 06

with the DISPLAY AND ALTER MEMORY command.

COMMENTS

Return to monitor mode.
Display and Alter memory.
Address entered, data shown.
New constant entered.

New constant deposited.
Program re-started.

The counter now operates about half as fast as before.

We can observe the internal operation of the program by using a
breakpoint, which will stop program execution at a selected

instruction and return to the monitor mode.

Let's watch the outer

delay loop operate by placing a breakpoint at address H'OA'. To
enable the breakpoint during program execution, the program must
be started via the RUN command.
starting address (H'00') must be entered by using the DISPLAY AND

ALTER PROGRAM COUNTER (PC) command:

KEY

[MON]

[BKPT] [A] [ENT/NXT]
[REG] [C] [0]
[RUN]

[REG] [1]

[RUN]

[REG] [1]

[RUN] [REG] [1]
[BKPT] [BKPT]
[RUN]

DISPLAY
HELLO
b.P = A
.PC =0
-000A F9
.rl = 3F
-000A F9
.rl = 3E
.rl = 3D
b.P =

1.6

Before running the program, the

COMMENTS

Return to monitor.
Breakpoint entered.

Enter starting address.
Start execution. Program
stops at breakpoint and
returns to monitor.

Rl has decremented by 1.
Execute again.

Rl has decremented again.
And again.

Breakpoint removed.
Program runs without stopping.



The simple program outlined above is designed to demonstrate
some of the capabilities of the INSTRUCTOR 50 and to give you
a feel for how the system works. More comprehensive programming
examples are presented in subsequent sections of this manual.

1.7






2. SYSTEM OVERVIEW

Introduction

A simplified block diagram of the INSTRUCTOR 50 system is shown in Figure 2.1
Major system components include:

2650 8-bit, N-channel microprocessor
2656 System Memory Interface (SMI)
Sixteen-key hexadecimal keyboard
Twelve-key function selection keyboard
Eight-digit, 7-segment display

Audio tape cassette interface
S100-compatible expansion bus

User System Executive (USE) monitor
Debugging aids

On-board user Input/Output

Forced jump logic

512 bytes of on-board user RAM
Crystal-controlled system clock

2650 Microprocessor

The 2650 processor is a single-chip microprocessor made using an ion-implanted,
N-channel silicon-gate process. It has a fixed command set of 75 instructions,
operates on 8-bit parallel data and can address 32,768 bytes of memory. All
bus outputs of the 2650 are three-state and can drive either one 7400-type
load, or four 74LS loads.

The 2650 contains a total of seven general-purpose registers, each eight
bits long. They may be used as source or destination for arithmetic operations,
as index registers, and for Input/Output (I/0) data transfers.

The processor instructions are one, two, OT three bytes long, depending on

the instruction. Variable length instructions tend to conserve memory Space
since a one or two-byte instruction may often be used rather than a three-

byte instruction. The first byte of each instruction always specifies the
operation to be performed and the addressing mode to be used. Most instructions
use six of the first eight bits for this purpose, with the remaining two bits
forming the register field. Some instructions use the full eight bits as an
operation code.

The 2650 has a versatile set of addressing modes used for locating operands
for operations and an interrupt mechanism which is implemented as a single
level, address vectoring type. Address vectoring means that an interrupting
device can force the processor to execute code at a device-determined location
in memory.

2-1



2650
1 MICROPROCESSOR

358 MH | CLOCK
it 7N T surrens
2656 SMI —@ IN
(MONITOR CASSETTE
FIRMWARE & INTERFACE CASSETTE
RAM) —@ OUT
512 BYTES CONTROL
OF RAM DECODING
USER HEX
PARALLEL KEYBOARD &
1/0 DISPLAY
FORCED USER
JUMP INTERRUPT &
LOGIC SERIAL 1/0
BUFFERING & $100
LOGIC FOR >
S100 BUS COMPATIBLE
EXPANSION BUS

Figure 2.1: Instructor 50 Basic Block Diagram
2-2



Detailed hardware and software information on the 2650 microprocessor is
provided in the accompanying Signetics 2650 Microprocessor Manual.

2656 System Memory Interface

The Signetics 2656 System Memory Interface (SMI) contains Read-Only Memory
(ROM),, Random-Access Memory (RAM), and a programmable I/0 port. Two
notable features are onboard decoders that make it possible to place the
ROM and RAM anywhere in the memory space and an I/0 port that can be set
up as either a bidirectional port or as chip-select lines. The chip-select
capability eliminates a great deal of the TTL that usually surrounds
microprocessors. The 2K USE monitor, 128 bytes of scratch pad memory, I/0
decode logic, and the system clock are housed in the 2656 SMI.

Keyboards

A 16-key hexadecimal keyboard and a 12-key function control keyboard enable
you to communicate with the INSTRUCTOR 50. Both the hexadecimal keyboard
and the function keyboard are under control of the USE monitor. The monitor
performs a scanning process to determine what key has been depressed and what
action is to be taken by the INSTRUCTOR 50 as a result of the depression. A
functional description of the various controls and indicators is provided in
Section 3.

Display Panel

The 8-digit, 7-segment display panel provides responses to input commands
and guides you in the use of the INSTRUCTOR 50 by displaying prompting
messages describing the data that must be entered.

Messages or responses are displayed using the seven-segment display font
illustrated in Figure 2.2. Note that the characters 'b' and 'd' arc always
displayed with the right-hand decimal point attached in order to distinguish
these characters from the number '6'.

Figure 2.2 also shows the hexadecimal code required in the monitor's display
buffer to display the character illustrated. To display a character with a
right-hand decimal point attached, H'80' must be added to the value given.
For example, H'07' will display '7', while H'87' will display '7.'. Refer
to Section 5 for additional information on the use of the monitor's display
subroutine.

Audio Cassette Interface

An audio cassette interface lets you load and store programs into and out
of RAM. The storage medium is any audio cassette recorder.

S100-Compatible Expansion Bus

The INSTRUCTOR 50 includes an S100-compatible expansion bus connector so

that other standard products, such as additional memory or prototyping cards,
can be used with the system. This connector carries all of the 2650's I/0
signals in addition to control signals required by the S100 bus. (See Section
6.)

2-3



I N A Ry ¥
L I L ]

Ccr o0
a0 104

oL I
HA L dE

TR
I~ I L LI

(OF) (10) (1) (12) (13)

Ll I
- =l

(14) (15) (16) (17) (18)
- = 11
(19) (1A) (1B) (1C)

() [INDICATES THE HEX VALUE USED AS THE
INTERNAL DISPLAY CODE.

NOTE: IF 8016 IS ADDED TO ANY CODE, A DECIMAL
POINT WILL APPEAR WITH THE CHARACTER.

Figure 2.2: Instructor 50 Display Font

2-4



Monitor Firmware

The USE (User System Executive) monitor supervises operation of the
INSTRUCTOR 50 and allows you to enter and alter programs, execute these
programs in continuous or single-step modes, and perform a number of
auxiliary functions. Monitor commands are entered via the control keys
and the hexadecimal keyboard, and responses are displayed on the monitor
display.

A basic flowchart of the monitor is shown in Figure 2.3. The monitor
normally idles in the scan display and keyboard mode. If a key closure
is detected during the scan, the monitor verifies that this is a new

key closure (that any previously depressed key had been released),
extinguishes the display, performs a keyboard debounce function, and then
performs the requested function. The monitor then resumes the display
and keyboard scan. ‘

Monitor functions are terminated by depressing a new function key.
Interrupts are inhibited while the monitor is running.

Debugging Aids

Two key features incorporated into INSTRUCTOR 50 are designed specifically
for program debugging. These features are:

1. The ability to set a breakpoint that automatically interrupts
execution of programs at any point without loss of hardware
or software status.

2. The ability to step through a program one instruction at a time.

When a breakpoint is encountered during program execution or when a single
instruction is executed in the single-step mode, control is returned to

the monitor at which time you may examine the 2650 registers, the Program
Status Word (PSW), and the program counter to determine the status of the
microcomputer. You can then continue execution, set a new breakpoint, or
resume the single-step operation. While in the monitor mode, you may change
any register value, including the PSW and program counter, and you may alter
memory locations.

On-Board User /O

Both parallel and serial I/0 are available in the INSTRUCTOR 50. The
parallel I/0 port provides 8 switch inputs and 8 individual Light-Emitting
Diodes (LEDs) as a latched output port. A single LED is attached to the
processor's FLAG output, and the SENS key on the function control keyboard
allows you to test the processor's SENSE input. Additionally, you may
exercise interrupt operation by using the interrupt (INT) key on the function
control keyboard. See Section 5 for a discussion of the INSTRUCTOR 50's

I/0 capabilities.

2-5



MON KEY

® INITIALIZE SYSTEM
® DISPLAY ““HELLO”

~ A

SCAN DISPLAY
AND KEYBOARD

YES

NO

YES

EXTINGUISH DISPLAY

DEBOUNCE DELAY

COMMAND

OR DATA?

GO TO INDICATED STORE DATA

COMMAND ROUTINE

' >

UPD
DISPLAY

ATE
BUFFER

Figure 2.3: Basic Use Monitor F
2-6

low Chart




Forced Jump Logic
The Forced Jump Logic performs the following functions:

e Entry into the MONITOR mode when power is applied to the
INSTRUCTOR 50 or when the MON key is depressed.

® Re-entry to the MONITOR mode after executing one instruction
in single-step operation or upon detection of a breakpoint.

Memory and I/O Organization

512 bytes of RAM storage is provided for storing user programs and data.
The RAM area may be expanded via the expansion bus connector.

Partitioning of the INSTRUCTOR 50's memory and I/O locations is illustrated
in Figure 2.4. The supplied user memory occupies locations H'0000' to
H'O01FF' and may be expanded to occupy location H'0200' - H'OFFE' and

H'2000' - H'7FFF'. The extended I/0O ports from H'00' to H'F7' are available
for program use. Ports H'F8' to H'FF' and memory locations H'1000' to
H'1FFF' are reserved for the USE monitor.

An additional 64 bytes of RAM storage is available to user programs for
storing data values. This additional storage space occupies memory locations
H'1780' to H'I7BF'. Because of the way the USE monitor operates, instructions
should not be stored at these locations. '

The INSTRUCTOR 50 I/O data port is assigned one of three locations, depending
on the setting of the Port Address Select Switch. These are memory address
H'OFFF', extended I/0 address H'07', or non-extended Port D.

Clock Circuitry

The 2656 SMI provides the clock circuitry for the INSTRUCTOR 50. A 3.579545
MHz crystal is used to provide the reference frequency.

Internal Power Supply

The INSTRUCTOR 50 uses a self-contained A-C power pack that produces 8 VAC

@ 1.5A. An on-board rectifier and regulator reduces this to 5 VDC. A
jumper option permits the use of an alternate 8 VDC source. The INSTRUCTOR 50
may be plugged into any standard 115 VAC domestic wall socket. (European
models require 220 VAC primary power).

2-7



7FFF

| ‘07" IS ADDRESS
OF 1/0 PORT

AVAILABLE
A FOR A
A  USERRAM
EXPANSION
2000
1FFF
USE
MONITOR
FIRMWARE
1800
17FF —
17¢0 MONITOR RAM
17BF USER PROGRAM
DATA STORAGE RAM
s FF RESERVED FOR
177F
NOT rg | USE MONITOR
_ AVAILABLE F7
1000 ‘0OFFF' IS
OFFF <—} ADDRESS OF
1/0 PORT
AVAILABLE AVAILABLE
FOR il
USER RAM USeR
EXPANSION PROGHRAM
0200
01FF
SUPPLIED
USER RAM -]
0000 00
HEX HEX
ADDRESS MEMORY ADDRESS  EXTENDED 1/0

Figure 2.4: Memory And I/O Organization

2-8



3. CONTROLS AND INDICATORS

Introduction

This section provides a brief functional description of the

various keys, switches and indicators associated with the IN-
STRUCTOR 50. See Figure 3.1.

The 12-key Function Control Keyboard and the 16-key Hexadecimal
keyboard enable you to communicate with, enter data, and per-
form the various system functions associated with the INSTRUCTOR
50. The 8-digit display is used by the USE monitor to display
responses to keyed input commands. The other switches and in-
dicators are associated with various INSTRUCTOR 50 facilities.

Function Control Keyboard

The keys in the left-most column of the function control key-
board (SENS, INT, MON, and RST) are used primarily for system
control. All other keys on this keyboard perform functions
associated with entry, execution, and debugging of programs.

The RST and MON keys are active at all times. All other keys
except SENS and INT are normally active only during the monitor
mode. Depressing these keys while executing your program has
no effect. The SENS and INT keys are active only during exe-
cution of a program and have no effect on monitor operation.

FLAG

AUN EIGHT-DIGIT
INDICATOR DISPLAY
INDICATOR PANEL

CASSETTE
CONNECTORS

 Sifnptic
2650 INSTRUCTOR

epaenrkees™® e
s A -
RS _

PORT DATA
INDICATORS
PORT DATA DIRECT/INDIRECT FUNCTION HEXADECIMAL
INPUT SWITCHES PORT ADDRESS INTERRUPT CONTROL KEYBOARD
SELECT SWITCH SWITCH

KEYBOARD



However, you may take advantage of the .INSTRUCTOR 50's keyboard
and display facilities by .incorporating calls to the monitor sub-
routines controlling these ‘devices as part of your program. See
section 5 for a description of these subroutines.

KEY
SENS

INT

MON

RST

‘WCAS

RCAS

STEP

FUNCTION

Controls the SENSE input to the 2650 when executing
a user program. The SENSE input is ' normally a logic
'0'. Depressing the SENS key will set the SENSE in-
put to a logic '1'.

Allows you to manually interrupt the processor when
executing a program. When this key is depressed, an
interrupt sequence begins, resulting in the processor
being vectored to or through memory location 07. The
Direct/Indirect switch on the INSTRUCTOR 50 panel
determines whether an instruction at location 07 is
executed (Direct) or whether location 07 contains a
branch address to another location in the user mem-
ory (Indirect). A switch accessible through a cut-
out in the bottom panel permits interrupts to be
controlled by the AC line input frequency. See
Section 5 for more information on INT options.

Terminates any operation in process and causes the
forced jump logic to output a jump instruction se-
quence resulting in an entry to the monitor mode.
The response to a depression of the MON key is the
message HELLO on the display panel.

When this key is depressed, any current operation
is terminated, and a RESET signal is applied to the
2650 causing program execution to begin at address
zero. The system does not enter the monitor mode
when this key is depressed.

Allows programs to be transferred from the INSTRUCTOR
50 memory to audio cassette tape.

Allows programs to be transferred from audio cassette
tape to the INSTRUCTOR 50 memory.

Causes the 2650 to execute a single program instruc-
tion and return to the monitor mode, displaying the
address of the next instruction to be executed on
the monitor display.

3-2



RUN Depressing this key terminates the monitor mode and
causes program execution to begin at a previously
specified address. Program execution continues until
(1) a breakpoint is encountered; (2) the RST or MON
keys are depressed; or (3) the program executes a
WRTC or HALT instruction.

BKPT Allows you to specify and examine a program break-
point.
REG Places the INSTRUCTOR 50 in the Display and Alter

Registers mode. In this mode, you may examine and
alter the contents of the 2650 general-purpose reg-
isters, the program counter value, and the value of
the Program Status Word (PSW). This key is also used
to initiate entry into the ADJUST CASSETTE and FAST
PATCH commands. See Section 4.

MEM Places the INSTRUCTOR 50 in the Display and Alter
Memory Mode. In this mode your may specify memory
locations that you wish to examine, and you may alter
the contents of these memory locations.

ENT NXT Enters keyed-in data into memory or registers and also
causes the contents of the next sequential memory or
register location to be displayed. The use of this
key during the various monitor operations is des-
cribed in the detailed command descriptions, Section 4.

Hexadecimal Keyboard

The 16-key hexadecimal keyboard (0 through 9 and A through F)
is used to enter address and data parameters as required. This
keyboard is also used in conjunction with the REG key on the
~function control keyboard to enable certain commands. See
detailed command descriptions, Section 4.

Eight-Digit Hex Display Panel

The 8-digit display panel is used by the monitor to display
prompting messages and responses to keyed input commands. It
also displays prompting messages to guide you in the operation
of the INSTRUCTOR 50.

Port Data Input Switches
These eight switches are used to specify a byte of input data at

the parallel I/O port. This value is read when the 2650 exe-
cutes a read I/0 port instruction.

3-3



Port Data Indicators

The eight 1I/0 port LEDs reflect the current value in the parallel
output port latch. This latch is loaded with the contents of an
internal register by a write I/O port instruction.

Direct/Indirect Interrupt Switch

This switch determines whether the 2650 executes a direct or
indirect branch to subroutine when it acknowledges an interrupt
request.

Port Address Select Switch

This switch selects the manner in which the parallel I/0 port is
addressed. The three modes are: non-extended I/0 - Port D, exten-
ded I/0 at port address 071¢> and memory mapped I/0 at address
OFFF

16.

FLAG Indicator

This LED indicates the current value of the FLAG bit in the 2650's
Program Status Word. If the FLAG bit is a one, the LED is on.
If the FLAG bit is a zero, the LED is off.

RUN Indicator

The RUN indicator reflects the operating status of the 2650. When
the 2650 is executing either the monitor program or a user program,
the RUN light is on. The RUN light is off when the 2650 has exe-
cuted a HALT instruction or when the PAUSE line of the S100 inter-
face has been driven low.

3-4



4. COMMAND DESCRIPTIONS

Introduction

This section describes the various commands available to the
INSTRUCTOR 50 user. These commands include:
DISPLAY AND ALTER REGISTERS
DISPLAY AND ALTER MEMORY
FAST PATCH-
DISPLAY AND ALTER PROGRAM COUNTER
BREAKPOINT
STEP
WRITE CASSETTE
ADJUST CASSETTE
READ CASSETTE
RUN
RESET

In this section, each pair of facing pages discusses a single
command. The left-hand page is devoted to text, while the right-
hand page actually shows what is displayed on the monitor display
panel when specific keys are depressed. The circled numbers imbedded
in the text on the left-hand page correspond with the circled numbers
on the right-hand page.

A discussion of the INSTRUCTOR 50's error messages is presented at the
send of this section.

4-1



DISPLAY AND ALTER REGISTERS

FUNCTION: This command allows you to inspect and alter, if desired, the
contents of the 2650's general-purpose registers and/or Program Status
Word (PSW).

PROCEDURE:
1. Depress the key @ followed by the register address corres-
is

ponding to the first register to be inspected, @ according to the
following table:

REGISTER

ADDRESS REGISTER
0 RO
1 R1, bank 0
2 R2, bank 0
3 R3, bank 0
4 R1, bank 1
5 R2, bank Y/
6 R3, bank %t
7 PSU
8 PSL

2. The contents of the register are displayed as two hex digits in the
data field of the display.

3. The register contej e modified at this time by keying in a new
value followed by [ EN[/NXT| . The numbers keyed in and appearing in
the DATA display field are displayed there only and can be edited by
simply keying in the correct characters . The display shifts to
the left each time a new character is ent ed, and characters shifted
out of the two-digit field are lost. The hex value ap pearing on the
display is deposited in the register when the M key is de-
pressed. @

4. When the key is depressed after step 2 or 3, the next higher
register in sequence will be displayed as in step 2 unless the PSL

is being displayed, in which case RO will be the nex egister display-
ed.

The command is terminated by initiating any other command.

If the keys 9, B, D, or E are depressed following lREG | in step 1, the
key depression will be ignored. If the keys A, C, or F are depressed,
the INSTRUCTOR 50 will enter the ADJUST CASSETTE, DISPLAY AND ALTER
PROGRAM COUNTER, or FAST PATCH commands, respectively. See appropriate
command descriptions.

4-2



DISPLAY AND ALTER REGISTERS

EXAMPLES
KEY DISPLAY COMMENTS
(:) _ REG [ T = ] Awaiting register address
@\ 4 (s = 7E] Rl, bank 1 = H'7E!
@ o [rs = OF] | Rz, bank2 = H'OF'
Ol mr [ 16 = 13] | R3, bank1 = H'I¥
Example A: Examine contents of R1 - R3 of bank 1
KEY DISPLAY COMMENTS
(:) REG [ r = | Awaiting register address
® 7 [[ru = o04) PSU = H'04'
@Dl B3 [P = 53] | PSL = H'53’
4 [ PL = 48J Wrong data entered
<:> 4 [j PL = 40 ] Correct data entered
% 0 = 72J Entered data deposited in
PSL and RO contents displayed.

Example B: Examine contents of PSW and change
contents of PSL to H'40'



DISPLAY AND ALTER MEMORY

FUNCTION: Allows you to examine and optionally alter the contents of
memory locations individually. This command is particularly useful when
you are debugging your program and wish to examine, verify and/or change
the contents of memory locations.

PROCEDURE:

1.

Depress the key followed by the address of the memory
location to be inspected. —{2 ) If fewer than four digits are entered,
the digits entered are used a$ the least-significant hexadecimal
digits of the address. If more then four digits are entered,
the last four digits are USed as the address.

Depress the key @ to display the contents of the specifi-
ed memory location. The contefits is displayed as two hexadecimal digits
in the data field of the display.

You may continue to_examine the contents of sequential memory locations
by depressing the m key. If you wish to alter the
content of gny memory location, enter the new data via the hexadecimal
keyboard. Only the last two digits entered are retained, so that
an error iméntry can be corrected by entering the correct data. To
deposit the new data into the specified memory location, you may either
depress the key or transfer control to a new function by
depressing a function key.

Each time new data is specified, the monitor performs a read-after-write
check to verify that you are not attempting to write into a ROM area or
into nonexistent memory. If the check fails, error message 3 is display-
ed. To recover from this error, depress the MEMl key and repeat the
cycle correctly. '

4-4



DISPLAY AND ALTER MEMORY

EXAMPLES
KEY DISPLAY COMMENTS
MEM Ad. = B Awaiting memory address
L Ad. = 1041 10 = Address of memory
location to be examined

®© ©® 0o

& Q@ 0@

©

ENT

NXT [; .0010 OZi] H'02' = contents of memory
location 0010

ﬁ§¥ [ﬁ .0011 FFA] Address and contents of next
sequential memory location

Example A = Examine contents of memory location 0010
and move to next sequential memory location
KEY DISPLAY COMMENTS
MEM Lk Ad. = 1 Awaiting memory address

[ . Ad. 22 |

NXT

[ .0022 06 |

[ .0022 o5 |

REG

=]

Address of memory location
to be examined

H'06' = Contents of memory
location 0022

Desired contents of memory
location 0022 entered and
displayed.

H'05' deposited into memory

location 0022, Display and Alter
Memory Command is terminated, and
monitor enters Display and Alter

Registers Command.

Example B:

Examine contents of memory location 0022, change

data, and transfer control to another function.




FAST PATCH

FUNCTION: The FAST PATCH command allows you to enter long strings of data
into memory from the hexadecimal keyboard. Once the starting address is
selected, data is loaded into memory sequentially--one byte for every two
hex keys depressed. Once keyed in, data may not be changed in the FAST
PATCH mode. To change data, you must use the DISPLAY AND ALTER MEMORY
command or re-enter the FAST PATCH command starting at the address where
the change is required.

PROCEDURE

1. To enter the FAST PATCH command, depress -the key @ on
the function_control keyboard followed by | F| on the héXadecimal
keyboard.

2. Enter the desired starting address on the hexadecimal keyboard. <:)

NOTE: You may bypass this step and go directly to step 3 to begin at
a known starting address. The starting address is known under any one
of the following conditions:

a) When a file has been read into memory from a cassette tape by the
INSTRUCTOR 50. The file's starting address will be the beginning
address for the FAST PATCH.

b) The address from which the last exit from the DISPLAY AND ALTER
MEMORY or FAST PATCH command took place.

3. Depress the [ENT/NXT | key on the function control keyboard to
set the starting address. Data’may now be entered into the specified
address. :

4. Enter desired data for the displayed address as two hex digits. <;2
Continue entering data in this manner until all data is entered. e
INSTRUCTOR 50 automatically increments the memory address as data is

entered.
5. Exit the FAST PATCH mode by depressing or another function
key. ‘il’

6. A read-after-write check is performed as each byte is deposited. The
INSTRUCTOR 50 will display Error 3 if data cannot be stored.

4-6



FAST PATCH

KEY (s) DISPLAY COMMENTS
@)|| res [ = )
@|| [ .ad = ] Auziting starting memory
G|l |]o A, = 10 Starting address entered
® ol [ o010 1 Starting address set
G| |2 o010 12 ) Data entry
®)| |1 |3 [ o011 13 |
M| |1 ||4 ooz 14 |
1 ||s [o013 15 |
|1 ||s (o014 16 |
MEM [ .Ad. = ] | Exit from FAST PATCH mode

Enter Data String '"12 13 14 15 16" into

Successive Memory locations Starting at Address H'10'

4-7




DISPLAY AND ALTER
PROGRAM COUNTER

FUNCTION: The DISPLAY AND ALTER PROGRAM COUNTER command allows you to
examine or change the address of the first instruction to be executed by
the 2650 during execution of a RUN or STEP command.

PROCEDURE: .
1. To enter the DISPLAY AND ALTER PROGRAM COUNTER command, depresg _the
REG| key on the function _control keyboard followed by |[C

~on the hexad&cimal keyboard.

2. The display will show the current Program Counter (PC) value as four
_ hexadecimal digits. <f>

3. . If you want to change the PC address, enter the desired address on the
hexadecimal keyboard. (f)

NOTE: For a multiple-byte inétruction, the address entered is the
; address of the first byte. '

4. Depress any command key (;2 on the function control keyboard to
set the desired starting address. If the [ENI/NXT] key is used,
the INSTRUCTOR 50 transfers control to the DISPLAY AND ALTER REGISTERS
" command. '

4-8



DISPLAY AND ALTER
PROGRAM COUNTER

EXAMPLE
KEY DISPLAY COMMENTS
@ || re -1
(:) C [ﬁiPC = 0015_J 0015 = present contents
of Program Counter
(:) 1 7 .PC = 17 ‘j Starting address changed
to 0017
@| [ |
T = ‘_j Sets new starting address,
NXT [—f ' and transfers control to
DISPLAY AND ALTER REGISTERS
Command

Set Starting Address for

4-9

RUN Command to H'0017'




BREAKPOINT

The BREAKPOINT COMMAND allows you to enter, clear, or examine a
program breakpoint. A breakpoint returns system control from the
executing program to the monitor and enables you to examine the
state of the memory and processor registers, make modifications,
if desired, and continue program execution from the point of
interruption.

PROCEDURE:

1. Depress the key on the function control keyboard @
to place the INSTRUCTOR 50 in the breakpoint mode.

2. The monitor will display either:

a) A blank data field if a breakpoint address was not
specified previously.

b) The address of the breakpoint previously entered. (:)

3. Enter the.desired breakpoint address on the hexadecimal key-
board. If the desired address is already displayed, as
in step (Z2b), re-entry is not required.

NOTE: If a breakpoint is set at a multiple-byte instruction,
the address specified for the breakpoint should be the address
of the first byte.

4. Depress the [ENT/NXT| key (;;) or another function key (:)

to set the breakpoint at the address displayed.

5. To clear a breakpoint, depress the | BKPT | key twice in
succession.

NOTE: The breakpoint is inserted into your program when you enter

the execution mode via the RUN command. When the breakpoint is
encountered during program execution, the breakpoint address and
contents are displayed, preceded by a'-" (minus) sign. The instruction
at the breakpoint address is restored and executed prior to this
display, and the Program Counter is updated to the address of the
instruction following the breakpoint.

ERROR MESSAGES

During specification of the breakpoint address, the INSTRUCTOR 50
may display one of the following error messages:

ERROR 1  If the user attempts to specify a breakpoint address in
the INSTRUCTOR 50's ROM address space or_in non-existent
memory. To clear this error, depress ﬂonce.

ERROR 2 If the user attempts to enter a new breakpoint address

after having set a previous breakpoint address by de-
pression of the m key. To clear this error,

depress any function key. The original breakpoint
address will be saved.

4-10



BREAKPOINT

EXAMPL
.
DISPLAY COMMENTS
] r_ﬂ - e o b ] e e+ 8 4 At e o e A S e e 4 e o 15
[;b.P = No previous breakpoint
T T specified. Waiting for
breakpoint address.
l b.P = 44 ] Breakpoint address entered.
[- b.P = UO44J Breakpoint address set.
er = ] Breakpoint address set by
exiting to another function.
[—TB.P = 0044] Breakpoint address displayed.
[ h.P = ~J Breakpoint cleared.

Set Breakpoint at Address H'0044' and then clear it.

4-11



STEP

FUNCTION: Causes the 2650 to execute a single instruction and return to
the MONITOR mode, displaying the address of the next instruction to be
executed on the monitor display.

PROCEDURE:

1. Enter the address of the first instruction to be executed as described
under DISPLAY AND ALTER PROGRAM COUNTER command.

2. Depress the | STEP | key. () The INSTRUCTOR 50 will execute a single
instruction and display the address of the next instruction to be
executed and the data at that address.

3. At this point you may examine and alter memory and/or register values
if desired by using the appropriate commands.

Continue as in step 2 to repeat the single-step operation. @
To exit the single-step mode, depress any function key.

6. Note that a breakpoint, if entered, is ignored during single-step
operation.

The single-step sequencer and the forced jump logic are used in this mode

of operation. Following is the sequence of operations executed by the
monitor when the key is depressed:

a) The monitor SINGLE STEP flag is set.

b) Register contents previously stored upon entry to the
monitor are restored to the 2650.

c) The monitor executes a '"hidden single step" to determine
how many cycles are contained in the instruction to be
stepped.

d) The monitor permits execution of one user program instruc-
tion by counting the predetermined number of cycles.

e) The registers (RO - R3, R1' - R3' and PSW) are saved.
f) The Program Counter is updated to the next instruction.

g) The address in the Program Counter and data at that
address are displayed. The SINGLE STEP flag is cleared.

h) The monitor exits to the KBD SCAN routine to await user's
input.

4-12



STEP

EXAMPLE
KEY (s) DISPLAY COMMENTS

@| |res|| c|| 8 ENT) | [T_x = ] |Starting address H'0008"
entered

<:) STEP [—AOOOA 42 44] Single step executed.*
Next instruction is at
H'000A', and op-code is
H'42' (ANDZ, R2)

<:) STEP [7 000B CC 4] Next instruction op-code

: is H'CC' (STRA, RO)

<:> STEP | 000E 20 | | Next instruction op-code
is H'20' (EORZ, RO)

<:> REG [7 r = J Exit single step

Single step three instructions starting at address H'0008

#Since the displayed address is two greater than the starting address
(H'000A' - H'0008' = 2), the first instruction executed was a two-byte
instruction.

4-13



WRITE CASSETTE

FUNCTION: The WRITE CASSETTE command allows you to write programs and
data from memory onto cassette tape. Any good quality audio cassette
tape recorder may be used as the output device. The data transfer rate
is approximately 300 bits per second.

" PROCEDURE:

General Installation

Connect the INSTRUCTOR 50*'s Cassette-Out Jack to the microphone (MIC)
input of the cassette deck using the appropriate cable supplied with
the INSTRUCTOR 50 package.

Install tape in transport.

Make certain that the tape is positioned so that previously recorded
files will not be destroyed when the WCAS command is issued.

Adjust recorder's input level control, if one is provided, to normal
recording level.

Operation

1.

N N AN

o 3

10.

11.

Depress the key @ to place the INSTRUCTOR 50 in the
WRITE CASSETTE mode.

Enter the lower (beginning) address of the file to be written. @

Depress the key @ to set the lower address.

Enter the upper (ending) address of the file to be written. @

Depress the key @ to set the upper address.

Enter the program start address (the address at which you want your
program to begin executing).

Depress the key a to set the start address.

Enter the file identification (ID) number. 9
NOTE:  The file ID may be any hex value betw&én 00 and FF.
If no ID is entered, the default file number is 00.

Place the cassette deck in the RECORD mode.

Depress |ENT/NXT| key.@ This starts a five second delay prior to
actual memory dump to tape. The INSTRUCTOR 50 flashes the FLAG Indi-
cator at one-second intervals during this delay. The message HELLO is
displayed @ when data transfer to tape is completed.

During the recording process, a visual indication of the '"dump' can be
observed on the I/0 port indicators by placing the I/O Port Address Se-
lect Switch in the EXTENDED (center) position.

4-14



@@ 0@ OO0 PO ©

WRITE CASSETTE

Tape Deck Shutdown

. Turn the audio tape recorder off.
. If the tape deck has a counter, note its value for future reference.
. Disconnect tape deck and remove and store tape cartridge.

Error Messages

The INSTRUCTOR 50 will display the message 'Error 7' if the value of the
specified upper address is less than the value of the lower address.

EXAMPLE

Key (s) Display Comments

WCAS r L.Ad. = J Waiting for lower address of
file to be written onto tape

(0] [ LAd. = 0 | Lower address entered

ENT [ U.Ad. = ] Lower address set. Waiting for

NXT upper address.

Ef)] (U.Ad. = 76 J Upper address entered

ENT [ S.Ad. = j Upper address set. Waiting for

NXT start address.

@ [ S.Ad.= 10 ] Start address entered.

ENT E . F= ) Start address set. Waiting for

NXT file number.

L .F=1 File ID entered.

% L HELLO ] File address set. Write data to
cassette tape completed.

Write a file to tape with the following parameters:
File Number = 1
Beginning Address = 0
Ending Address = H'76'
Program Start Address = H'10'
4-15



ADJUST CASSETTE

FUNCTION: The ADJUST CASSETTE command allows you to adjust the output
level of a cassette recorder for proper interface to the INSTRUCTOR 50
during a READ CASSETTE operation. ’

While most conventional audio cassette recorders are compatible for use
with the INSTRUCTOR 50, the playback volume control must be accurately
adjusted to ensure proper detection of data by the INSTRUCTOR 50. Other-
wise, the data signal may be distorted (volume too high) or may drop be-
low detection thresholds (volume too low).

PROCEDURE:

General Installation

1. Check to ensure that the cassette recorder's playback heads and
transport mechanism are clean and free from any obstructions.

2. Install tape in transport and rewind to an area known to contain
a previously recorded file. Use of the sample tape supplied with
the INSTRUCTOR 50 is recommended.

3. Connect the INSTRUCTOR 50's PHONE jack to the cassette deck's PHONE

or SPEAKER output jack using the appropriate cable supplied with the
INSTRUCTOR 50 package.

Operation

1. Place the INSTRUCTOR 50 in the ADJUST CASSETTE mode by depressing
thkey on the function control keyboard followed by on the
hexadecimal keyboard.

2. Start playback of previously recorded data.

3. Adjust tape deck VOLUME or LEVEL control. The following three

digits will be displayed intermittently during the adjustment process:

U Increase volume
d. Decrease volume
- volume control adjusted correctly

4. When a minus sign (-)(:>is displayed, the audio cassette's playback
volume is properly adjusted.

5. During the adjust process, the I/0 Port indicators can also be used
to observe data being read by the INSTRUCTOR 50 if the I/O Port
Address Switch is placed in the EXTENDED (center) position. The dis-
play has the following significance:

4-16



®ee ©

ADJUST CASSETTE

All LEDs OFF Indicates proper operation or no data.
Some negative Indicates that the playback level is too low -
number (LED not enough pulses
bit 7 ON)
Some positive Indicates that the playback level is too high.
number (LED Tape "noise' is being detected - too many pulses.
bit 7 OFF)

6. When level is properly set, turn off the cassette deck.

7. Depress the key®to exit from the ADJUST CASSETTE routine.

EXAMPLE

Key (s) Display Comments

U] | Places INSTRUCTOR 50 in the ADJUST

CASSETTE mode. Increase playback
level.

d. ] Decrease playback level

-] Playback level properly set

MON B

HELLoj Exit ADJUST CASSETTE mode

4-17




READ CASSETTE

FUNCTION: The READ CASSETTE command allows you to read files previously
stored on cassette tape using the WRITE CASSETTE command and store these
files in the specified RAM locations.

PROCEDURE:

General Installation

1. Check to ensure theat the cassette recorder's playback heads and
transport mechanism are clean and free from any obstructions.

2. Install tape in transport and rewind to desired file location.

3. Connect the INSTRUCTOR 50's PHONE jack to the cassette deck's PHONE
or SPEAKER output jack using the appropriate cable supplied with the
INSTRUCTOR 50 package. :

4. Adjust playback level to setting previously determined to be proper
by ADJUST CASSETTE operation (See ADJUST CASSETTE command).

Operation

1. Depress the RCASI keyc:)to place the INSTRUCTOR 50 in the READ
CASSETTE mode.

2. Depress one or two hex digits<:>corresponding to the file number
desired to be read back.

NOTE: the user may elect to read the first file encountered by
omitting this step.

3. Depress the |ENT/NXT key<:>to set the file ID number.

4, Start the cassette deck in playback mode. The reading of data by
the INSTRUCTOR 50 can be visually observed on the I/0 Port indica-
tors by placing the I/O Port Address Switch in the EXTENDED (center)
position.

5. When the reading of the specified file is completed, the INSTRUCTOR
50 will display the HELLO message. <:>

6. Turn off the audio cassette deck.

7. Data read from tape will be placed at consecutive memory locations

starting at the beginning address specified when the file was created.
The Program Counter (PC) will be set to the address specified as the
program start address when the file was created. :

4-18



®

® © ©

READ CASSETTE

Error Messages

During the read-in process, any one of the following error messages may
be displayed:

* Error 4 - Cassette Block Check Character (BCC) error

« Error 5 - Read Cassette Memory Write Error

* Error 6 - Read Cassette character from tape not ASCII HEX

EXAMPLE
Key (s) Display Comments
RCAS L .F= ]| Places the INSTRUCTOR 50 in the READ
CASSETTE mode. Waiting for file ID
number
E_,__,__ LF= 1 _] File ID number entered
ENT /NXT [ ] Sets file ID number. Begins reading
data into memory*
[_7 HELLO ] File is fully loaded into memory

* Flashing I/0 Port indicators at this point indicate that the file is
being read.

4-19



RUN

FUNCTION: Terminates the monitor mode and causes program execution to
begin at the address specified in the Program Counter. Program execution
continues until 1) a breakpoint is encountered, 2) the RST or MON key is
depressed, or 3) the user program executes a WRTC (Write to Port C) or
HALT instruction.

The RUN command allows program execution to begin at any point in the user
program. It is particularly valuable, when used in conjunction with a

set breakpoint, for debugging sections of a program. When the RUN key

is depressed, the INSTRUCTOR 50 performs the following actions:

1. If a breakpoint was set, the WRTC code is inserted at the specified
breakpoint address and a monitor 'BREAKPOINT ENABLED' flag is set.
This flag distinguishes a breakpoint 'WRTC' from any other 'WRTC' in
the user program when control is returned to the USE monitor by
the forced jump logic upon execution of a WRTC instruction.

2. The processor registers are restored to the last values existing when
control was returned to the USE monitor after a breakpoint or single

step, or to the values specified by you in a DISPLAY AND ALTER
REGISTERS operation.

3. The INSTRUCTOR 50 switches to the execution mode by jumping to the
address specified in the Program Counter. This address will be the
address of the next instruction following a breakpoint or single

step, or the address specified by you in a DISPLAY AND ALTER PROGRAM
COUNTER operation.

4-20



RESET

FUNCTION: When the RST (RESET) key is depressed, current INSTRUCTOR 50
activity is terminated immediately, and the processor begins program exe-
cution at address H'0000'. Breakpoint and single-step flags, if set, are
ignored. A high (logic one) level appears on the expansion connector
RESET pin for as long as the key remains depressed.

When the RESET key is used to initiate program execution from location
H'0000', the initial processor register values are unknown, and a break-
point, if previously specified, is not inserted in the user program.
Program execution continues until any one of the following occurs:

1. The RESET key is depressed again.

2. A HALT instruction (H'40') is executed. Upon detection of a HALT
instruction, the processor halts until the RESET key is depressed
again or, if the Interrupt Inhibit PSW bit was not set, until an
interrupt occurs.

3. A WRTC instruction is executed or the MON key is depressed. Control
is transferred to the USE monitor and the HELLO message is displayed.
When control is returned to the monitor, the address of the last
memory fetch is saved in the Program Counter, and register values
are saved in monitor RAM. These may be examined by using the
appropriate commands.

4. The processor's PAUSE input is raised high via the expansion connec-
tor. When this occurs, the RUN indicator light is extinguished. Pro-
gram execution will begin at the next instruction when PAUSE goes
low.

4-21



ERROR MESSAGES

The USE monitor incorporates extensive error checking firmware. If an error
is encountered while attempting to execute a command, a message of the form
'"Error n' is presented on the monitor display. Error messages are summar-
ized in Table 4.1.

- Error 1 BREAKPOINT CANNOT BE SET

+ Error 2 INVALID COMMAND

«  Error 3 ALTER OR PATCH MEMORY WRITE ERROR

+ Error 4 CASSETTE BCC ERROR

+ Error 5 READ CASSETTE MEMORY WRITE ERROR

« Error 6 CHARACTER FROM TAPE NOT ASCII HEX

Error 7 START ADDRESS GREATER THAN STOP ADDRESS
«  Error 8 KEYBOARD HAS 2 KEYS IN COLUMN DOWN

« Error 9 NEXT SINGLE STEP IS INTO MONITOR

TABLE 4.1 Error Messages

Additional information on each of the above error messages is presented
in the following paragraphs.

Error 1 *BREAKPOINT CANNOT BE SET*

The display message Error 1 indicates that an attempt was made to set a
breakpoint at a memory address which is not RAM. A breakpoint is entered
by inserting the WRTC,RO code H'BO' into the memory address specified. A
read-after-write check is then performed. If this test fails, the error
message is displayed.

Error 2 *INVALID COMMAND*

The display message Error 2 indicates that an incorrect command sequence
was entered via the keyboard.

4-22



Error 3 *ALTER OR PATCH MEMORY ERROR*

The display message Error 3 indicates that an attempt was made to change
the data at a memory address which is not RAM. When changing memory data
during an Alter Memory or Patch Memory operation, a read-after-write check
is performed. If this test fails, the error message is displayed.

Error 4 *CASSETTE BCC ERROR*

When data is written on tape with the WRITE CASSETTE command, a Block

Check Character (BCC) is appended to the end of the file. The BCC is re-
calculated when data is read back with a READ CASSETTE command and compared
with the BCC recovered from the tape. If the BCC's do not match, the
message Error 4 is displayed, indicating that some problem has occurred in
reading the tape.

Error 5 *READ CASSETTE MEMORY WRITE ERROR¥*

Data read back from the tape is stored in the INSTRUCTOR 50 at consecutive
memory locations starting at the address specified in the tape file. A
read-after-write check is performed on each byte stored.  If the test fails,
the message Error 5 is displayed.

Error 6 *CHARACTER FROM TAPE NOT ASCII HEX*

Data written on tape uses the ASCII code for the characters 0 through F.

The display message Error 6 indicates that a non-hex character was recovered
from the tape. Correct adjustment of playback level should be verified
using the ADJUST CASSETTE command.

Error 7  *START ADDRESS GREATER THAN STOP ADDRESS*

The display message Error 7 indicates that the start address in the WRITE
CASSETTE command is greater than the specified stop address. The operation
cannot be performed. See Section 4,

Error 8 *KEYBOARD HAS 2 KEYS IN COLUMN DOWN*

The Error 8 message is displayed when the monitor detects that two keys
are depressed simultaneously. The monitor cannot decode the action desired.

Error 9 *NEXT SINGLE STEP IS INTO MONITOR*

Single-step operation in the memory area reserved for the USE monitor
(H'1000" - H'1FFF') is not permitted and will cause unpredictable results
if executed. The display message Error 9 is a warning that such a single-
step operation was attempted.

4-23






5. USING THE INSTRUCTOR 50

Restrictions on Using the 2650 Instruction Set

When writing programs, the INSTRUCTOR 50 user has the complete
2650 microprocessor instruction set at his disposal. However,
because of the interaction between the USE monitor and user
hardware and software, certain restrictions must be observed:

1) The USE monitor reserves the WRTC, Rx instruction
(H'BO' - H'B3') to indicate the location of a break-
point in a user program. If this instruction is exe-
cuted in a user program, control of the system will
return to the monitor, and the message HELLO will be
displayed.

2) If a HALT instruction (H'40') is executed, processor
operation will terminate. This is indicated by the RUN
indicator being extinguished. The only ways to re-
initiate operation are to depress the key or, if
interrupts were_not inhibited, to cause an interrupt by
depressing thelINT key.

If a breakpoint is set at a HALT instruction location,
the monitor will prevent execution of the HALT, and
normal operation will continue.

3) The top of memory page zero is occupied by the USE
monitor program. Therefore, the ZBSR and ZBRR instruc-
tions with negative displacements should not be used
unless entry into the monitor program is desired. The
same applies to interrupt vectors with negative dis-
placements.

4) The USE monitor uses three levels of the 2650 subroutine
Return Address Stack (RAS) in its operation. Since the
RAS is limited to eight levels, user programs being
developed under control of the USE monitor should be
limited to a maximum of five levels of subroutines,
including interrupt levels.

5-1



Using Interrupts

Interrupts provide a method of interfacing a synchronous pro-
gram to asynchronous external events. An Interrupt Request
forces the 2650 to temporarily suspend execution of the program
currently running anhd branch to an interrupt service routine.
Upon completion of the interrupt service routine, the 2650 re-
sumes execution of the interrupted program.

The INSTRUCTOR 50 provides three methods of interrupting the
2650. The first method is a manual interrupt using the
key on the function keyboard. The second method uses a 60Hz
signal derived from the INSTRUCTOR 50's power supply to generate
interrupt requests once every 16.7 ms. This option accommodates
user programs that require a real-time clock. (For European sys-
tems, the real-time clock interrupts occur at a 50Hz rate or
once every 20 ms). The third method of interrupting the IN-
STRUCTOR 50 is via the S100 bus interface. This section des-
cribes the 2650's interrupt mechanism and provides details on
selecting the interrupt options.

The 2650's interrupt mechanism can be selectively enabled or dis-
abled at various points in a user program by setting or clearing
the Interrupt Inhibit (II) bit of the processor's Program Status
Word (PSW). If the Interrupt Inhibit bit has been set, the 2650
ignores interrupt requests. The Interrupt Inhibit bit may be
cleared (thus enabling interrupts) in any of the following four
ways:

1) By reseting the processor (depressing the]&ﬂ‘key);

2) By executing a Clear Program Status Upper (CPSU) in-
struction with the proper mask value;

3) By executing a Return from Subroutine and Enable In-
terrupt (RETE) instruction; or

4) By executing a Load Program Status, Upper (LPSU) in-
truction.

The interrupt mechanism of the 2650 operates with a vectored
interrupt. When the processor accepts an interrupt request, it
responds by issuing an INTerrupt ACKnowledge (INTACK). Upon re-
ceipt of INTACK, the interrupting device responds by placing an
"interrupt vector'" on the 2650 data bus. This vector is used

as the address, relative to byte zero, page zero, of a branch

to subroutine instruction. The interrupt vector may specify
either direct or indirect addressing. A vector that specifies
direct addressing causes the 2650 to execute a subroutine branch
to the address specified by the vector. If an indirect address

5-2



is specified, the interrupt vector points to the first of two
successive memory locations (interrupt vector and interrupt vec-
tor + 1) where the address of the interrupt subroutine is stored.
In this case, the processor first fetches the two interrupt sub-
routine address bytes and then branches to the subroutine. Thus,
a direct interrupt vector transfers the program to any location
from -64 to +63 relative to byte zero, page zero, and an in-
direct interrupt vector can transfer the program to any location
within the 2650's 32K addressing range.

If the Interrupt Inhibit bit has been cleared, the INSTRUCTOR 50
responds to an interrupt request with the following sequence pof
events:

1) The 2650 completes execution of the current instruction.
2) The processor sets the Interrupt Inhibit bit of the

PSW (=1)
3) The first byte of a Zero Branch to Subroutine Relative

(ZBSR) instruction is inserted in the 2650's internal
instruction register.

4) The processor issues INTACK and waits for an interrupt
vector to be returned on the data bus.

5) The INSTRUCTOR 50's interrupt logic places the interrupt
vector (H'07' or H'87') on the data bus. Whether the in-

terrupt vector specifies direct (H'07') or indirect (H'87')

addressing is determined by the setting of the Direct/
Indirect switch on the front panel. If the switch is in
Direct position, the next instruction executed is the in-
struction at address H'07'. If the switch is in the In-
direct position, the next instruction executed is at the
address contained in H'07' and H'08'.

6) The 2650 executes the IZBSR instruction. The address of
the next instruction in the interrupted program is stored
in the 2650's internal subroutine address stack, and the
stack pointer is incremented.

7) When the interrupt subroutine is terminated with an RETE

or RETC instruction, the 2650 decrements the stack pointer,

replaces the current value of the Program Counter with the
address previously stored in the subroutine stack, and re-
sumes execution of the interrupted program.

Since the INSTRUCTOR 50 interrupt logic vectors interrupt requests

through memory address H'07', user programs that support direct
interrupts must place the first byte of the interrupt subroutine
at this address. If indirect subroutines are used, the address
of the interrupt subroutine must be stored at memory locations
H'07' and H'08'.

5-3



As interrupts may occur at any point in a user program, it is
entirely possible that they will affect the contents of the 2650's
internal registers with unpredictable results for the interrupted
program. This problem can be solved in two ways. The first way
is to tightly control the portions of a user program that can

be interrupted by selectively setting and clearing the Interrupt
Inhibit bit in the PSW. The second method is to save the 2650's
internal registers and Program Status Word upon entering the in-
terrupt subroutine and restoring them before returning from the
subroutine.

The INSTRUCTOR 50's interrupt modes can be selected by a com-
bination of switch settings and a jumper option on the printed
circuit board. As mentioned previously, the Direct/Indirect
swtich on the INSTRUCTOR 50's front panel determines whether the
interrupt vector generated by the interrupt logic specifies

direct or indirect addressing. Whether the 2650 responds to the
INT key or the 60 Hz real-time clock is determined by the setting
of a slide switch located at the bottom of the INSTRUCTOR 50 case.
Optionally, devices external to the INSTRUCTOR 50 can generate in-
terrupt requests via the S100 bus interface. To accomplish this,
a jumper option described in the last part of this section is used.
Following are two programming examples that make use of the INSTRUCTOR
50's interrupt facilities:

FOLLOWING ARE TWO PROGRAMMING EXAMPLES THAT MAKE USE OF THE IN-
STRUCTOR 50's INTERRUPT FACILITIES:

Example 1 - Direct Interrupt

This example is a complete program that first clears the parallel
I/0 port lights and then maintains a binary counter at the I/0
port lights. The count is incremented each time the key is
depressed. Prior to running this program, you must place the
Direct/Indirect switch in the Direct position, and the I/0 port
address select switch in the Non-Extended position.

Address Data Instruction Mnemonic Comment

0000 76,20 PPSU H'20' Set II - inhibit interrupts

0002 75,08 CPSL H'08" Operations without carry

0004 1F,00,0A BCTA,UN,H'000A"’ Branch over interrupt sub-
routine

0007 84,01 ADD1,RO,H'01" Increment RO (counter)

0009 17 RETC,UN Return from interrupt
subroutine

000A 20 EORZ,RO Clear RO (counter)

000B FO WRTD,RO Write RO to the lights
(non-extended)

0o0o0cC 74,20 CPSU H'20" _ Clear II (open interrupt
window)

000E 76,20 PPSU H'20' Set II (close interrupt
window)

0010 1F,00,0B BCTA,UN H'000B' Branch back to WRTD

5-4



Example 2 - Indirect Interrupt

This example performs the same function as above but uses in-
direct interrupts. The interrupt subroutine starts at address
H'100'. This address is contained in program locations H'07'
and H'08'.

Address Data Instruction Mnemonic

0000 76,20 PPSU H'20' Set II - Inhibit
Interrupts.
0002 75,08 CPSL H'08" Operations without
carry,
0004 1F,00, BCTA,UN H'0009' Branch over interrupt
09 address,
0007 01,00 ACON H'0100' Interrupt routine
address ,
0009 20 EORZ,RO Clear counter.
000A FO WRTD,RO Write RO to the lights.
000B 74,20 CPSU H'20' Clear II - enable in-
terrupts .
000D 1F,00, BCTA,UN H'000D' Loop forever.
0D
0100 84,01 ADDI,RO H'O1" Increment counter.
0102 FO WRTD,RO Write RO to the lights .
0103 37 RETE,UN Return and enable in-

Comments

terrupts .



Using the I/O Switches and Lights

The 2650 provides several methods for monitoring the status of

and controlling the operation of external I/O devices. One

such method unique to the 2650 is a serial I/0 port formed by

the SENSE input pin and the FLAG output pin on the processor. The
2650 also has provisions for two types of parallel I/O instructioms,
called extended and non-extended. The non-extended I/0 in-
structions are one-byte instructions that allow a user program to
read from and write to two eight-bit I/0 ports: port C and port D.
The two byte extended I/0 instructions expand the 2650's I/0 capa-
bilities to 256 bidirectional I/O ports.

In addition to the 2650 instructions specifically intended for I/0
operations, you may choose to use the memory mapped I/0 mode.

This mode is implemented by assigning a memory address to an I/0
device. While a memory mapped I/0 port requires more decode

logic than either an extended or a non-extended port, it can

be accessed by the full range of 2650 memory referencing instruc-
tions. (Refer to the 2650 Microprocessor Manual for a description
of the 2650 I/O control modes.)

The INSTRUCTOR 50 includes features that demonstrate all of the
. 2650's I/0 modes. These features are described as follows.

FLAG and SENSE I/0

The 2650's FLAG and SENSE pins are associated with the flag and
sense bits of the processor's internal Program Status Word (PSW) .
The sense bit of the PSW always reflects the signal level on the
SENSE pin. Likewise, the level on the FLAG pin always reflects
the current value of the flag bit in the PSW.

The user may manually control the value of the sense bit in the

PSW using the key on the function control keyboard. When
the key is depressed, the sense bit is a one. Otherwise,

the SENSE bit is a zero.

The INSTRUCTOR 50's FLAG indicator on the front panel is driven
by the FLAG pin on the 2650, providing a visual indication of the
flag bit's current value. The FLAG light is on if the flag bit
is a one, and the light is off if the flag bit is a zero.

5-6



Non-Extended I/0

The 2650 can control two bidirectional I/0 ports with four single-
byte instructions: WRTC, WRTD, REDC and REDD. These instructions
move data between port C, port D and the 2650's internal regis-
ters.

The INSTRUCTOR 50's front panel parallel I/0 port can be assigned
as non-extended port D by placing the Port Address select switch
in the NON-EXTENDED position. In this position, the I/0 port

can be accessed with the WRTD and REDD instructions. This allows
you to manually enter data with the input switches by including

a REDD instruction in your program. Similarly, your program can
write a data value to the output LEDs by executing a WRTD in-
struction.

Extended I/0

The 2650 can control up to 256 bidirectional I/0 ports with the
double-byte instructions WRTE and REDE. The second byte of these
instructions specifies the extended I/0 port address. The IN-
STRUCTOR 50's parallel I/0 port can be assigned as extended add-
ress H'07' by placing the Port Address switch in the EXTENDED po-
sition. In this mode, the parallel I/0 port can accessed with
WRTE and REDE instructions that specify an extended address

H'07' in their second byte.

Memory Mapped I/0

Memory mapped I/0O is simply a matter of decoding a memory address
for enabling an I/0 port. To demonstrate this I/0 mode, the IN-
STRUCTOR 50's Port Address select switch can be placed in the
MEMORY position. This assigns the parallel I/0 port a memory
address of H'OFFF'. Thus, any memory reference instruction that
specifies H'OFFF' as the source or destination will access the
front panel parallel I/0 port. When an instruction reads lo-
cation H'OFFF', the value set in the port input switches is loaded
into the specified register. If an instruction writes to memory
location H'OFFF', the value contained in the specified register
will appear in the port output LEDs.

5-7



CALLING MONITOR SUBROUTINES

Now that you are familiar with the 2650 instruction set and have
successfully entered a few simple programs, you are undoubtedly
ready and anxious to make use of some of the more powerful fea-
tures provided by the INSTRUCTOR 50. For example, you might
want to write a decimal add program using the INSTRUCTOR 50's
keyboard and eight-digit display. By calling subroutines within
the monitor program, the display can be used to request the two
numbers to be added, and the hex keyboard can be used to enter
the numbers. After the two numbers have been entered, and their
sum calculated, another monitor subroutine can be called to dis-
play the results of the addition. This section describes these
subroutines and provides examples in their use.

In addition to subroutines that provide easy access to the IN-
STRUCTOR 50's keyboard and display, the monitor program contains
other subroutines that are useful in writing application pro-
grams. Refer to the program listing in the appendices for addi-
tional information on other subroutines.

The monitor subroutines are called with Zero Branch to Subroutine
Relative (ZBSR) instructions. The ZBSR instruction specifies a
subroutine relative to byte zero, page zero. The relative add-
ressing range is -64 to +63. Since the 2650 uses an 8K page
addressing scheme, ZBSR instructions with a negative offset (rela-
tive address) wraps back around to the top of the first 8K page.
The top of the first 8K page in the INSTRUCTOR 50 is located
within the monitor program and contains a table of indirect sub-
routine addresses. Thus, the monitor subroutines can be called
by ZBSR instructions that specify indirect addressing and have
the negative offset that points to the desired subroutine. The
addresses required to call the various monitor subroutines are
included in the description of each subroutine.

The subroutine descriptions include a list of the 2650 registers
used in their execution. Unless otherwise specified, the contents
of these registers will contain meaningless data when the sub-
routine returns control to the user program. Therefore, registers
that contain important user program information must be stored in
a memory location before the monitor subroutine is called.

When calling monitor subroutines, caution must be exercised to
avoid overflowing the 2650's internal 8-level subroutine stack.
Since some of the user-accessible subroutines call other sub-
routines within the monitor program, each subroutine description
includes the number of other subroutines called during its exe-
cution. This information allows you to calculate the number of
subroutine stack levels required by your program and insures
that this number never exceeds eight.

5-8



MOVE SUBROUTINE

Calling Instruction:

Mnemonic Hex Value
ZBSR *MOV BB,FE

Registers Used:

R1 = Message Pointer -1 (high-order byte)
R2 = Message Pointer -1 (low-order byte)
Subroutine Levels Used: 0

Function:

MOVE fetches an eight-byte message within the user's program and
stores the eight bytes in the monitor's display buffer. When com-
bined with the DISPLAY subroutine, MOVE allows you to write
messages on the INSTRUCTOR 50's eight-digit display. Any of the
INSTRUCTOR 50's characters can be used in assembling a message.

Operation:

Before calling MOVE, you must store an eight-byte message within
your program, The location of the sequential message bytes is
transferred to MOVE by storing the address of the first message
byte in R1 and R2 prior to calling the subroutine. Because of
the algorithm used to implement the MOVE subroutine, it is neces-
sary to subtract one from the message pointer before it is stored
in R1 and R2. Following is an example of the MOVE subroutine
call and a list of the hexadecimal values for the INSTRUCTOR 50's
display characters.

5-9



EXAMPLE OF MOVE SUBROUTINE CALL

Comments

Load message pointer -1 in Rl and R2
(H'100' -1 = H'OOFF').

Call MOVE. The message bytes stored
in locations 0100-0107 are transferred
to the monitor's display buffer.

blank (first byte of message)

ortmmxm

blank
blank (last byte of message)

Character Value

*H H'14'
%0 H'15"
*= H'16'
*BLANK ~ H'17'
*J H'18'
% H'19"
* H'1A'
*y H'1B'
*N H'1C'

Address Data Instruction Mnemonic

]

°

°
0010 05,00 LODI, R1 H'00'
0012 06,FF LODI, R2 H'FF'
0014 BB, FE ZBSR *MOV

o

o

°
0100 17 =
0101 14 =
0102 0E =
0103 11 =
0104 11 =
0105 00 =
0106 17 =
0107 17 =

Hex Values of Display Characters

Character Value Character Value
*0.0 H'00' *A H'OA'
*1.1 H'01" *B H'0B'
*2 H'02' *C H'0C'
*3 H'03! *D H'0D'
%4 H'04" *F H'OE'
*¥5.5 H'05' *F H'OF'
*6.G H'06" *p H'10'
*7 H'07' *1, H'11'
*8 H'08" *U H'12!
*9 H'09' *R H'13!

5-10



DISPLAY SUBROUTINE

Calling Instruction:

Mnemonic Hex Value

ZBSR *DISPLY BB,EC

Registers Used:

RO,R1,R2,R3

On entry RO = Display Command
On exit RO = Key Value (optional)

Subroutine }evels Used: O

Function:

When used with the MOVE subroutine, DISPLAY writes messages oOn
the INSTRUCTOR 50's eight-digit display. DISPLAY reads the
message stored in the monitor's display buffer with MOVE and
writes the message on the display. Optionally, DISPLAY can be
used to read the function and data keyboards and return the
value of a depressed Kkey.

Operation:

DISPLAY has three modes of operation that are selected by

writing a command byte in RO prior to calling the subroutine.

The DISPLAY commands and the functions they specify are summarized
below:

Value Placed
in RP Function

H'00' Displays message in display buffer until a
function or data key is depressed. Returns
the value of the depressed key in RO.

H'01' Makes one pass through the DISPLAY subroutine
and does not read the keyboards. A single pass
through the DISPLAY subroutine will not produce
a visible display. Hence, when this command
is used, it should be part of a loop that calls
DISPLAY a sufficient number of times to illumi-
nate the message.

H'80' This command is identical to the H'00' command
except that the decimal point of the most-
significant (far-left) digit is illuminated.

5-11



The function and data key values returned in RO when operating
in response to commands H'00' and H'80' are listed in the fol-
lowing table. This is followed by an example of the MOVE and
DISPLAY subroutine calls that displays the message HELLO until
the key is depressed.

Data Values for Command and Data Keys

Key Value Key Value Key Value
) H'00' 8 H'08' WCAS H'80'
1 H'01' 9 H'09' BKP H'81'
2 H'02! A H'0A' RCAS H'82'
3 H'03! B H'0OB' REG H'83!
4 H'04' C H'0C' STEP H'84"'
5 H'05' D H'0D' MEM H'85!
6 H'06' E H'0E' RUN H'86"'
7 H'07' F H'OF' ENT/NXT H'87'
Example of Move and Display Subroutine Calls
Address Data Instruction Mnemonic Comment
0010 05,00 LODI,R1 H'0O0' Place message table
0012 06,FF LODI,R2Z H'FF! pointer minus one in Rl
and R2Z,
0014 BB,FE ZBSR *MQV Call the Move subroutine.
0016 04,00 LODI,RO H'00' Place command byte in RO.
0018 BB,EC ZBSR *DISPLY Call the DISPLAY sub-
routine.
001A E4,86 COMI,RO H'86"' Compare returned key code
to RUN code. If equal,
001C 1C, XX, XX BCTA,EQ H'XXXX! branch to address
HY XXX .
001F 1E,00,16 BCTA,UN H'0016' If not equal, loop back
. and wait for next key.
0100 17 First byte of message
table = blank
0101 14 = H
0102 0OE = E
0103 11 = L
0104 11 = L
0105 00 =0
0106 17 = blank
0107 17 Last byte of message

table = blank
5-12



USER DISPLAY SUBROUTINE

Calling Instruction:

Mnemonic Hex Value

ZBSR *USRDSP BB,E6

Registers Used:

RO, R1, R2, R3

On entry R3 = Display Command
R1 = Message Pointer -1 (high order)
R2 = Message Pointer -1 (low order)

On -exit RO Key value (optional)

Subroutine Levels Used: 2

Function:

USER DISPLAY combines the functions of MOVE and DISPLAY. That
is, USER DISPLAY moves an eight-byte message from a user program
to the display buffer and then displays the message. As with
DISPLAY, this subroutine may be used to read the function and
data keyboards.

Operation:

Before calling USER DISPLAY, you must load the first address of
your message table (-1) in R1 and R2. Additionally, R3 must
be loaded with the desired command as in the DISPLAY subroutine.

The following example of a USER DISPLAY subroutine call displays
the message HELLO until the RUN key is depressed. (This example
is functionally equivalent to the example for the DISPLAY sub-
routine).

5-13



Example of a USER DISPLAY Subroutine Call

Address Data Instruction Mnemonic
00108 05,00 LODI,R1 H'00'

0012 06,FF LODI,R2 H'FF'

0014 07,00 LODI,R3 H'00"

0016 BB, E6 ZBSR *USRDSP

0018 E4,86 COMI,R0 H'86'

001A 1C,XX,XX BCTA,EQ H'XXXX'

001D 1F,00,10 BCTA,UN H'0010'

0100 17

0101 14

0102 OE

0103 11

0104 11

0105 00

0106 17

0107 17

Comment

Place message table
pointer -1 in R1 and

R2.

Place command byte in R3.
Call USER DISPLAY.

Compare returned key value
to RUN's value,

Branch to XX,XX if equal.
If not equal, loop back
and get another key.

First byte of message
table = blank

H

E

L

L

0

blank

Last byte of message
table = blank



NIBBLE SUBROUTINE

Calling Instruction:

Mnemonic Hex Value

ZBSR *DISLSD BB,F4

Registers Used:

RO and RZ

On entry:. RO

on exit: RO
R1

byte (high-order nibble, low-order nibble)
high-order nibble
low-order nibble

Subroutine Levels Used: 1

Function:

NIBBLE takes an eight-bit byte and separates it into two bytes,
each containing one of the original four-bit nibbles. This sub-
routine is useful in user programs that display a register or
memory data value on the INSTRUCTOR 50 display.

Operation:

The byte to be separated is passed to NIBBLE in RO. NIBBLE then
takes the least-significant four bits (low-order nibble) from RO
and places them in the four least-significant bits of R1. When
NIBBLE returns program control to your program, RO contains the
low-order nibble, and R1 contains the high-order nibble. The
most-significant four bits of both RO and Rl contain zeros. A
functional example of NIBBLE is shown below. This is followed
by an example of a NIBBLE subroutine call.

5-15



Functional Example of NIBBLE

On entry: RO = F3
On exit: RO = OF
R1 = 03
Example of NIBBLE Subroutine Call
Address Data Instruction Mnemonic Comment
0000 70 REDD,RO Read I/0 port (Non-Extended)
' into RO.
0001 BB,F4 ZBSR *DISLSD Call NIBBLE subroutine.
0003 CD,01,07 STRA,R1 H'01,07" Store low-order nibble in
message table.
0006 CC,01,06 STRA,RO H'01,06"' Store high-order nibble
in message table.
0009 05,00 LODI,R1 H'00' Place message table pointer
(-1) in R1 and R2.
000B 06 ,FF LODI,R2 H'FF' Place display command in RO.
000D 04,00 LODI,RO H'00'
000F BB,E6 ZBSR*USRDSP Call USER DISPLAY subroutine.
Displays previous Port D
value. Allows new I/0 value
to be set up in switches.
Exits when any key is depressed.
0011 1B,6D BCTR,UN H'6D’ Loop back to 0000 and get new
: I/0 value,
0100 13 = "R" (first byte of message table).
0101 0OE = "E"
0102 0D = "p"
0103 0D = "p"
0104 16 = "="
0105 17 = "blank"
0106 17 = "blank" (high-order nibble will
be stored here).
0107 17 = "blank" (low-order nibble will

5-16

be stored here).



INPUT DATA SUBROUTINE

Calling Instruction:

Mnemonic Hex Value
ZBSR *GNP BB,FA

Registers Used:

On entry: RO Input Command

On exit: RO Two Data Key Values

R1 = Two Data Key Values (optional)

R2 = Function Key Value

R3 = Data Entered Indicator
Subroutine Levels Used: 1

Function:

INPUT DATA displays the contents of the display buffer and scans
the data keyboard for data entry. As data is keyed in, the sub-
routine writes the input data in the least-significant digits of
the display. When a function key is depressed, USER DISPLAY re-
turns to the main program with the input data and function key
values in the 2650's internal registers.

Operation:

INPUT DATA has two selectable modes of operation. Mode selection
is made by writing an input command byte in RO before calling the
subroutine. The input command bytes and the functions they specify
are listed as follows:

5-17



Value Placed
in RO Function

H'00' Displays a four-digit message and accepts
four digits of data. As each data value
is keyed in, it is displayed in the
least-significant (right-most) display
digit, and previously entered values are
shifted left. Data entry is terminated
and program control is returned to the
user program when a function key is de-
pressed. If less than four data values
are entered, zeros are inserted in the
non-entered digit positions.

H'01' Identical to H'00' except that a five-
digit message is displayed, and two digits
of data are input from the data keyboard.

The four or five-digit message to be displayed by INPUT DATA must
be placed in the monitor's display buffer before INPUT DATA is
called. The message characters displayed are taken from the
first four or five bytes of the eight-byte message table trans-
ferred to the display buffer by the MOVE subroutine.

The data values input to INPUT DATA are returned to the main
program in RO for the two-digit input mode and to RO and R1 for
the four-digit input mode. 1In the two-digit input mode, the most-
significant data value entered is returned in the most-significant
nibble of RO, and the least-significant data value is returned in
the least-significant nibble of RO. In the four-digit input

mode, the two most-significant data values are returned in R1,
and the two least-significant data values are returned in RO.

When data entry is terminated with a function key depression, the
value of the function key is returned to R2, and a data entered
indicator value is returned to R3. If no data has been entered
before a function key is depressed, R3 will contain the value
H'7FE'. If data has been entered, R3 will contain a value of
H'00'. This allows you to insure that the data returned in RO
and R1 is valid data. The following example illustrates how data
is returned to the user program. (This is followed by an example
of an INPUT DATA call.)

5-18



Example of Data Entry and Register Contents on Return

From Input Data Subroutine

Key Display Comments
[11[(21[3]11[4] PLUS Initial display on subroutine entry.
[RUN] PLUS1234 Data values entered.

Data entry terminated and program
control returned to user program.

Register Contents on Return from Input Data Subroutine

Register Contents Comments
negister
RO H'34" Least-significant data values
R1 H'12' Most-significant data values
R2 H'86"' Value of RUN key
R3 H'00' Indicates valid data in RO and R1

Example of Input Data Subroutine Call

Address Data Instruction Mnemonic Comment

0050 05,00 LODI,R1 H'00' Place message table

0052 06,FF  LODI,R2 H'FE' pointer (-1) in RI

0054 BB,FE ZBSR *MOV Call MOVE to transfer
message table to display
buffer.

0056 04,00 LODI,R0 H'00' Place input command in
RO (H'00' = 4 digits).

0058 BB, FA ZBSR *GNP Call INPUT DATA subroutine.

0100 10 First byte of message
table = P

0101 11 = L

0102 12 = U

0103 05 = S

0104 17 = blank

0105 17 = blank

0106 17 = blank

0107 17 Last byte of message

table = blank

NOTE: Since the input command requests four digits of input
data, only the first four message table bytes (0100 -
0103) are displayed.

5-19



MODIFY DATA SUBROUTINE

Calling Instruction:

Mnemonic Hex Value
ZBSR *GNPA BB,FC

Registers Used:

RO,R1,R2,R3
On entry: RO

Input command

On exit: RO = Two Data Key Values
R1 = Two Data Key Values
R2 = Function Key Value
R3 = Data Entered Indicator
Subroutine Levels Used: 1
Function:

MODIFY DATA is very similar to INPUT DATA. The major difference
is that the initial display message can use all eight digit
positions on the INSTRUCTOR 50 display panel. MODIFY DATA enables
a program to display data values that were previously entered
with INPUT DATA and allows these data values to be modified.

Operation:

As with INPUT DATA, MODIFY DATA has two modes of operation that
are selected by writing an input command byte in RO prior to
calling the subroutine. The input commands and their respective
functions are listed below:

5-20



Value Placed in RO Resulting Function

H'00' Displays an eight-digit message and accepts
four digits of data. After the first data
key is depressed, the four least-significant
digits of the display are cleared. Each new
data value entered is then displayed in the
least-significant display digit, and pre-
viously entered values are shifted left.
Data entry is terminated when a function key
is depressed.

H'01' Identical to H'00' except that when the
first data key is depressed, the three
least-significant display digits are cleared,
and two digits of data may be entered.

The eight-digit message to be displayed must be transferred to

the monitor's display buffer with MOVE before MODIFY DATA is

called. The values for the data entered indicator are the same

for MODIFY DATA as for INPUT DATA. That is, R3 contains H'00' if

RO and R1 contains valid data and H'7F' if a function key was depressed
before data was entered. The following example illustrates operation
of MODIFY DATA. This is followed by an example of a MODIFY DATA
subroutine call.

Data Entry and Register Contents on Return

From MODIFY DATA

Data Input
Key Display Comments
JOB=01 Initial display on subroutine
entry.

[2] JOB= 2 Least-significant three digits
are cleared and new data is dis-
played.

[RUN] Data entry is terminated, and

program control is returned to
user program.

5-21



Register Contents on Return from MODIFY DATA

Register Contents
RO H'02'
R1 H'XX'
R2 H'86"
R3 H'00'

Comments

Data entered is returned in RO.

Data in R1 is meaningless.
Value of RUN key.
Indicates valid data in RO.

Example of MODIFY DATA Subroutine Call

Address Data Instruction Mnemonic Comment
0034 05,00 LODI,R1 H'00' Place message table poin-
0036 06,FF LODI,R2 H'FEF' ter (-1) in R1 and R2.
0038 BB,FE ZBSR *MOV Call MOVE to transfer the
message table to the dis-
play buffer.
003A 04,01 LODI,RO H'01' Place input command in RO
(H'01' = 2 digits).
003C BB,FC ZBSR *GNPA Call MODIFY DATA subroutine.
0100 17 First byte of message table =
"blank"
0101 18 = "Jn"
0102 15 = non
0103 OB = HBH
0104 16 - nmo1t
0105 17 = "blank"
0106 00 = "0" previously entered data value
0107 01 = "1" previously entered data value

5-22



Jumper Options

The INSTRUCTOR 50's versatility is enhanced by jumper options on
the printed circuit board. These options allow you to modify

the system's basic configuration. The jumpers are accessible
through cut-outs at the bottom of the INSTRUCTOR 50's plastic
housing. Figure 5.1 identifies the location of the various jum-
pers and their configuration. The factory supplied configurations
are identified by asterisks (*) in the jumper pin description
tables.

Jumper A - Interrupt Selection

As described previously, a switch at the bottom of the INSTRUCTOR
50 allows you to select interrupts from the interrupt key on the
function keyboard or from the input line frequency clock. Jumper
'A' provides additional interrupt flexibility by allowing interrupt
requests from external logic via the bus interface connector. If
this option is exercised, interrupt requests from external logic
will result in a vectored interrupt through memory address
H'0007'. The setting of the DIRECT/INDIRECT switch on the front
panel determines whether an externally generated interrupt re-
quest results in a direct or indirect subroutine branch. The pin
descriptions for jumper 'A' are defined in the following table:

JUMPER A Pin Descriptions

Pins
Connected Description

1-2* Normal operation. The 2650 recognizes interrupt
requests from the interrupt key or the real-time
clock, depending on the position of S6.

2-4 Bus interface. The 2650 recognizes interrupt re-
quests from the interface signal VIO (pin 4). The
interrupt latch is set on the rising edge of VIO.

2-39 Bus interface inverted. This configuration is iden-
3.4 tical to the 2-4 option except that the interrupt
latch is set on the falling edge of VIO.

Jumper B - S100 Clock Select

The bus interface includes three pins for S100 interface clock
requirements. The jumper 'B' option allows you to select be-
tween two clock signals generated by the INSTRUCTOR 50. The
first clock is the same 895 KHz clock available to the 2650.

5-23



S1NdNI HOLIMS
140d O/1 13711vHvd

LE GE €€ L€
00000000
8¢ 9¢ ¢vE z¢g

0£@ o @87 1z ®

suoieooT radwn(

117G 2Ingig

SH3AIHA a3
1H0d O/1 13711vdvd

an
\o

g e

%

9 43dwnr

0L 6 8
[ X X J

OoyL ZLO®
®cL 11O

8L@® @®0Z) 5 y3dwnr

o
6l

HOLIMS
12373S
1dNYY3LNI a d3adwnr
S
6€
s @ o)
GlL
L® @2
1A X E>
Vv d3adAanr

5-24



The second clock is the OPREQ signal generated by the 2650 gated
by the forced jump logic enable (i.e., the OPREQ clock is in-
hibited whenever the forced jump logic has control of the 2650's
address and data busses). The pin descriptions for jumper 'B'
are defined in the following table:

JUMPER B Pin Definitions

Clock Source Pins

Pin Numbers Description

11,12 These pins are driven by the INSTRUCTOR 50
895 KHz system clock.
13,14 These pins are driven by the conditioned OPREQ

signal. The frequency is approximately 303 KHz.
(NOTE: This clock is not a continuous frequency.
Some 2650 instructions are executed without
generating OPREQ).

S100 Clock Pins

Pin Numbers Description

8 This pin is connected to the S100 bus signal #1,
pin 25.

9 This pin is connected to the S100 bus signal g2,
pin 24.

10 This pin is connected to the S100 bus signal

CLOCK, pin 49.

Jumper C - Power Source Select

The INSTRUCTOR 50 is designed to operate with its own internal
power supply used in conjunction with the wall transformer sup-
plied with the system. Optionally, the input to the INSTRUCTOR
50's 5-volt regulator can be supplied from the interface bus
connector. Jumper 'C' supports this option. The pin descriptions
for jumper 'C' are defined in the following table:

JUMPER 'C' Pin Definitions
Pin Connected Description

18-20%* Normal operation. The INSTRUCTOR 50 power re-
quirements are supplied by the wall transformer.

18-19 The INSTRUCTOR 50 power requirements are supplied
by an 8-volt unregulated D-C source applied via

the bus interface connector.

525



Jumper D - Cassette Output Selection

The INSTRUCTOR 50's cassette interface provides two recording
signal levels. Jumper 'D' selects between a 30mV rms record
level and a 300mV rms record level. The pin descriptions for
jumper 'D' are defined in the following table:

JUMPER 'D' Pin Definitions

Pins Connected Description

15-17%* This option provides a 30mV rms record level to
the cassette.

16-17 This option provides a 300mV rms record level to
the cassette.

5-26



6. SYSTEM EXPANSION

Introduction

Microprocessors have had a tremendous impact on the hobbyist
computer market. Beginning with Altair's 8800 home computer,
the hobbyist market has literally exploded with new products.
These new products include not only basic computers but a host
of small support systems or peripheral boards. The first peri-
pheral boards were simple memory expansion boards, but today
there are a wide variety of peripherals available. There are
television interfaces for computer graphics, floppy disc inter-
faces for mass storage, and even a board that synthesizes human
speech.

The majority of these peripheral boards are designed to be com-
patible with the Altair 8800 bus. As more and more Altair 8800-
compatible systems were introduced, this microcomputer bus was
given an industry wide name, the S100 bus.

The INSTRUCTOR 50's S100 interface (an edge connector at the back
of the unit) transforms a simple learning device into a small
system computer limited only by the number and type of peripheral
boards used. Moreover, the powerful program/data entry and debug
facilities of the basic INSTRUCTOR 50 are extended to any device
connected to the S100 bus interface.

Because the Altair 8800 home computer was based on the 8080, many
of the S100 bus signals are essentially 8080 signals. Many of
these signals, such as the two-phase clock and negative supply
voltage, are not required by state-of-the-art microprocessors like
the 2650. Hence, the INSTRUCTOR 50's S100 interface bus is not
pin-for-pin compatible with Altair's original bus. However,

the INSTRUCTOR 50's interface bus contains the most commonly used
signals and can be easily connected to the majority of S100
peripherals. In addition to the common S100 bus signals, spare
pins on the S100 pin bus have been assigned 2650 signals (e.g, OPREQ
R/W and M/10). Thus, custom interfaces can be designed with the
2650 control logic, instead of the more cumbersome 8080 inter-
face logic. In short, the INSTRUCTOR 50's interface bus opens up
the entire universe of home computer peripherals to owners of the
INSTRUCTOR 50 training system.

The INSTRUCTOR 50 bus interface signals are described in Table 6.1.



Pin

10

11

#

TABLE 6.1

INSTRUCTOR 50 INTERFACE BUS SIGNALS
(* indicates a 2650 bus signal)

Mnemonic

Signal Description

+8V

+16V

XRDY

VIO

not
used

not
used

not
used

not
used

not
used

not
used

not
used

Positive 8 volts, unregulated. This line
provides +8 volts to the INSTRUCTOR 50 when
Jumper C selects the interface bus as the
system power source.

Positive 16 volts. This line is reserved
for +16 volts that may be required for a
S100 peripheral board. +16V is neither
required for or generated by the INSTRUC-
TOR 50.

External Ready. XRDY is returned by an ex-
ternal device when it has completed a data
transfer with the 2650. On board the IN-

STRUCTOR 50 XRDY becomes OPACK for the 2650.

Vectored Interrupt #0. VIO provides an ex-
ternal interrupt request when Jumper A is

wired for external interrupts. VIO is latched

and generates either an indirect or direct
interrupt (selected by the DIRECT/INDIRECT
switch) through address H'0007'.



12

13

14

15

16

17

18
19
20
21
22
23
24

R/W*

WRP*

M/I0%

RESET*

RUN/WAIT*

PAUSE*

not
not
not
not
not

not

A1

used
used
used
used
used

used

Read/Write. A 2650 control signal that
indicates whether the processor is per-
forming a read or write operation with an
external peripheral board. As with all of
the 2650 control signals, R/W is valid only
when OPREQ is true.

* NOTE: Indicates non-S100 2650 control
signals.

Write Pulse. A 2650 control signal that
is generated during memory or I/0 write
sequences. WRP may be used to strobe data
into the selected device.

Memory/Input-Output. A 2650 signal that in-
dicates whether the address bus contains a
memory or I/0 address during a data transfer
operation.

Reset. When driven high, RESET performs

the same operation as depressing the RST
switch on the INSTRUCTOR 50 front panel.
That is, the 2650 is reset and begins exe-
cuting the user program at location H'0000'.

Run/Wait. A 2650 control signal that in-
dicates whether the 2650 is in the wait
state or is executing a program.

Pause. This 2650 control signal input is
provided for Direct Memory Access (DMA)
operations. When driven high, this signal
causes the 2650 to enter the WAIT state af-
ter completing the instruction currently
being executed.

Phase 1 Clock. f1 may be driven by the 895
KHz system clock or the 2650 OPREQ signal de-
pending on the configuration of the Jumper B
option.

6-3



25

26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45

46

g2

not used
not used
not used
AS
A4
A3
AlS

Al2
A9
D01
DOO
Al10
D04
D05
D06
D12
D13
D17
not used

SOUT

SINP

Phase Z Clock. @2 may be driven by the system
clock or OPREQ depending on the configuration
of Jumper B.

Address Bit 5§
Address Bit 4
Address Bit 3

Address Bit 15. Since the 2650 has an address
range of 32K, this line is grounded.

Address Bit 12
Address Bit 9

Data Out Bit 1
Data Out Bit 0
Address Bit 10
Data Out Bit 4
Data Out Bit 5
Data Out Bit 6
Data In Bit 2

Data In Bit 3

Data In Bit 7

Output. SOUT indicates that the address bus con-
tains the address of an output I/0O device. The
addressed device may accept the value on the data
bus when PWR (pin 77) is active.

Input. SINP indicates that the address bus con-
tains the address of an input I/0 device. The se-
lected device should return its data when PDBIN
(pin 78) is active.

6-4



47

48
49

50
51

52

53
54
55
56
57
58
59
60
61
62
63
64

SMEMR

not used

CLOCK

GND
+8V

-16V

not used
not used
Dp*
D1%
D2%
D3*

D4*

not used

D5*
D6 *
D7 %

UOPREQ*

Memory Read. This signal indicates that the
address bus contains the address of a memory
location and that the 2650 is performing a
memory read operation.

System Clock. Depending on the configuration
of Jumper B, this line is driven by the 895 KHz
system clock or the 2650 OPREQ output.

System Ground.

Positive 8 volts. This line provides +8V to the
INSTRUCTOR 50 when Jumper C selects the inter-
face bus as the system power source.

Negative 16 volts. This line is reserved for
-16 volts that may be required by a S100 peri-
pheral board. Not supplied by INSTRUCTOR 50.

Data Bus Bit g - In addition to the 2650 con-
trol signals, the INSTRUC-
Data Bus Bit 1 - TOR 50 Interface bus also
includes a bidirectional data
Data Bus Bit 2 - bus. The 2650 signals form
a subset of the Interface
Data Bus Bit 3 - Bus that can be used to inter-
face the INSTRUCTOR 50 to
Data Bus Bit 4 - breadboard peripherals with
a minimum of interconnect
wires.

Data Bus Bit 5 -
Data Bus Bit 6 -
Data Bus Bit 7 -

User Operation Request - OPREQ is a 2650 con-
trol signal that indicates that the processor's
address bus, data bus, and other control sig-
nals are valid. OPREQ may be used to latch the
data bus for write operations and enable input
device bus drivers for read operations.

6-5



65

66

67

68

69
70
71

72

73

74
75
76
77

78

INTACK *

FLAG*

USENSE*

MWRITE

not used
not used
not used

PRDY

PINT

not used
not used
not used

PWR

PDBIN

INTERRUPT ACKNOWLEDGE. The 2650 returns INTACK
to an interrupting device in response to an IN-
TERRUPT REQUEST. Upon receipt of INTACK, the
interrupting device drives the data bus with a
relative branch address and asserts either XRDY
or PRDY (these signals become the 2650 status
signal OPACK).

FLAG. This line contains the 2650 single bit
output port.

USER SENSE. USENSE is the 2650 single bit input
port. FLAG and SENSE are part of the PROGRAM
STATUS WORD.

MEMORY WRITE. MWRITE indicates that data is to
be written into the memory location addressed
by the current value of the ADDRESS BUS.

PROCESSOR READY. PRDY is logically OR'd with
XRDY to form the 2650 status signal OPACK. PRDY
is returned by an addressed device (either memory
or I/0) or an interrupting device when the re-
quested data transfer has been completed.

PROCESSOR INTERRUPT. PINT is an S100 signal that
corresponds to the 2650 INTERRUPT REQUEST signal.
The 2650 acknowledges PINT when it completes the
instruction it was executing when PINT was driven
low. The 2650 does not recognize PINT if it is
in the WAIT state or if the INTERRUPT INHIBIT bit
of the PSW is reset. PINT can be used to release
the 2650 from the HALT state.

PROCESSOR WRITE. PWR indicates that the data bus
is valid and may be accepted by the addressed
memory location or output device.

PROCESSOR DATA BUS IN. PDBIN indicates that the
2650 is reading data from the addressed memory
location or input device. PDBIN may be used to
enable the selected device's data bus drivers.

6-6



79 Ag Address Bit @

80 Al Address Bit 1
81 A2 ~Address Bit 2
82 A6 Address Bit 6
83 A7 Address Bit 7
84 A8 Address Bit 8
85 Al3 Address Bit 13
86 Al4 Address Bit 14
87 All Address Bit 11
88 D02 Data Out Bit 2
89 D03 Data Out Bit 3
90 D07 Data Out Bit 7
91 D14 Data In Bit 4
92 D15 Data In Bit 5
93 D16 Data In Bit 6
94 D11 Data In Bit 1
95 D10 Data In Bit ¢
96 not used

97 not used

98 not used

99 POR POWER ON RESET. POR is an output signal that

indicates that power has been applied to the
INSTRUCTOR 50 and the system is being reset.

POR may be used to reset peripheral boards on the
Interface Bus

100 GND GROUND. System Ground.

6-7






7. THEORY OF OPERATION

Introduction

The INSTRUCTOR 50 is typical of modern microcomputers, reflecting
many of the recent advances in microprocessor technology. For
example, the current trend in microcomputer design is to replace
logic functions implemented with SSI and MSI circuits with complex
LSI microprocessor support circuits. This trend is exemplified

in the INSTRUCTOR 50 which makes use of the 2650 microprocessor
and the 2656 System Memory Interface. These two chips alone con-
stitute a basic microcomputer. Beyond this two-chip microcomputer,
the remainder of the circuits on the INSTRUCTOR 50 Printed Cir-
cuit Board are devoted to providing the microcomputer with man-
machine and machine-machine interfaces.

This section describes the hardware and software associated with
the INSTRUCTOR 50 system. The intent is not to give a detailed
exposition for maintenance purposes. The INSTRUCTOR 50 comes
fully assembled and debugged ready to be plugged in and used and
requires little or no maintenance. Rather, the intent is to in-
troduce you to the basic fundamentals of modern microcomputer de-
sign.

Basic Concept

The functional heart of computers in general and microcomputers

in particular is the system program. The program is a logical
sequence of machine instructions that monitor system status, and,
based on that status, decides what control actions to take. A
computer's Central Processing Unit (CPU) is a device that reads
instructions from program storage and, by executing the instruc-
tions, performs all of the arithmetic and logical operations re-
quired by the system program. The CPU also provides the system
program with the physical means to access and control the system's
I/0 functions. The INSTRUCTOR 50's CPU is the 2650 microprocessor.

The 2650 fetches instructions from program storage and communi-
cates with the system I/O circuits via its address bus, control
bus, and data bus. As the 2650 executes each instruction, the
address and control bus values specify the device to be communi-
cated with (memory location, I/0 device, etc.), and the data bus
serves as an information conduit between the processor and the
selected device. This information transfer scheme defines the
system's basic architecture illustrated in Figure 7.1. Con-
siderable savings in parts count was realized by decoding the
I/0 device addresses within the 2656 SMI.

7-1



2IN309)IYdIY ()G JojonIisuj o1seq :[°/ InSIg

1H0d 0/1 AV1dSIa B
13711vyHvd Q¥VOgAIN X3H

A A 4
3

1 |
”._oEzoo _ FOVAUILNI $s3°aqav a
ss3daav 00LS g

>
vivda dn
0592
9
1N0 <€—— o/l TOHLNOID m_
3113SSVD

NI ——> M__ <
n
g

21901 WYY 30023a WvH Wwoy
dANr 8 X Z1S 0/1 8ClL b, 14
Q32404 AI0710
IS 9592

LoH

7-2



Thus, when the 2650 executes an instruction that references an
1/0 device (e.g., the parallel I/O port), that device's address
is asserted on the address bus, and the Programmable Gate Array
within the SMI decodes the address and generates the I/O device's
enable signal. Thus enabled, the selected I/0 device either
accepts data from or returns data to the 2650 over the data bus.
As the 2650 executes each instruction, it selects the device
specified by the instruction (program storage, user RAM, an I/O
device, etc.) with the address bus and communicates with the
selected device via the data bus.

Detailed Block Diagram Description
A detailed block diagram of the INSTRUCTOR 50 is presented in

Figure 7.2. This section gives a description of each of the major
functional blocks illustrated in Figure 7.2

The Microcomputer

As mentioned previously, the basic microcomputer consists of the
2650 microprocessor and the 2656 SMI. The 2650 provides the fol-
lowing functions:

8-bit ALU The Arithmetic Logic Unit performs all of
the arithmetic and logical operations re-
quired for program execution.

Program Counter The program counter is used to generate
program storage addresses.

Interrupt Logic The interrupt logic performs all functions
required to respond to an interrupt request
from an external device.

Internal Registers The 2650's seven internal registers pro-
vide temporary data storage and serve as
a link between the ALU and external data
storage, such as RAM locations and I/0
devices.

Bus Interface Logic The bus interface logic distinguishes be-
tween memory and I/0 device addresses and
specifies the direction of data transfers
between the processor and external data
storage.



weagel(q yoorg po[rela QS I03onxsuy 7'/ Ingig

SLHOIT SNLV LS| SIHILIMS 21901 A1ddNS HIMOd NI
-
H0d 1" |04 071 1804 O/t 40d o 10N S v
A HIWHO4SNVHL
O/1 43sn EER ﬂ «
\ ‘ QUVO8AIN J AS+ 121 2H 09
viva 1S4
avay ISN3S (1041NOD XNW
XMW sNg viva
on ssadaav IE
211355V QHVO8AIN QayvoaAIN
1sv1 viva NOILONNS AV1dSIQ
- 1NI EnLE:[e]
viva o) w3isioay LNINO3S
311HM - 4 / $S3¥AAV 1SV INTS
\
10313s
041NOD 3gouls P » 11910
0/1 3113SSVD ssavaav
1sv1 123713S NWNT0D
sng
1041
‘NOD 21907 NV2S
HOd =1 4 y1ds1Q B QHYO8AIN
A
10H1NOD NVIS
ayvO08A3N 3113SSYI
sna -
00LS viva T A sng v1va ﬂ sna viva )
1081NOD |
- o1 s$3¥aav sna #mmmxoc,‘ sng ss3waav
ayvos
«—- é ~ A3 13538 Y
NI STYNDIS 4 sng [1081NOD wvy H0d 3
ooLs 10HLNOD 8 X 821 - i
ENYEN K
MS INI n
- ES
8X Az | HINI ss3yaav
1dNYHILNI
Y
| Y Yy v vod | | N
< - 3 Y
l— o/l $s3daav e OL/W M/H 'D3HdO n 3
o viva TS 2 [ N )
» 2901 HaoNIN03S  [Souinos D %2019 - 3
Wl LdNBYILNI dWNF Q30804 | g o Wyy MY SO | WS N > 3
2H 0 ~on 8XZLS mm_m_ 959z %2012 v
H v A 3IOVHOILS 39VHOLS H0SS3I20Hd
HOLINOW

= 123¥I0NI
T

1034ia

WvH9O04Hd H3sn

74



The 2650 microprocessor is surrounded with bus drivers (buffers).
Because the 2650 is fabricated using an MOS process, its output
pins can drive only one TTL load. The bus drivers buffer the
2650 outputs and are able to drive all of the loads on the IN-
STRUCTOR 50's busses.

The buffered 2650 data, address and control busses are connected
directly to the 2650 SMI. The SMI contains the 2K monitor pro-
gram, 128 bytes of scratch-pad RAM, a system clock generator, and
an eight-bit I/0 port. The eight-bit I/O port is controlled by a
mask Programmable Gate Array (PGA). As configured for the IN-
STRUCTOR 50, the PGA decodes the address bus and provides eight
I/0 chip enables for the user RAM and I/0 devices. Table 7.1
lists the functions of these outputs.

All of the monitor program's scratch-pad memory requirements are
met by the SMI's 128 byte RAM. 1In fact, the monitor only requires
64 bytes, thus leaving the remaining 64 bytes for user storage.

It should be noted, however, that while the INSTRUCTOR 50 enables
the user to access these 64 bytes of the SMI's RAM with the
DISPLAY AND ALTER MEMORY command and the FAST PATCH command, the
SINGLE STEP and BREAKPOINT commands are not supported within this
memory space. Hence, these 64 bytes should be used for data
storage only. That is, user programs should be stored in user
RAM or on an S100 memory expansion board.

INSTRUCTOR 50 Memory Allocation

Figure 7.3 is a memory map of the INSTRUCTOR 50's addressable
memory space. The memory map is divided into four 8K pages re-
flecting the addressing architecture of the 2650. The first page,
page zero, contains the user RAM and the SMI ROM and RAM. The
second, third, and fourth pages are available for user memory ex-
pansion or memory mapped I/O.

The user RAM is formed by four 256 x4 RAMs (Signetics 2112's) that
are enabled by the SMI chip-enable lines mentioned previously.

Section 6 describes how S100 memory boards can be added to the
INSTRUCTOR 50.



TABLE 7.1

CONTROL SIGNALS GENERATED BY THE SMi

Signal
RAMOCE

RAM1CE

PORTEFX

USRPORT

USRMEM

DI/O

CI/O

MON

Function

RAM 0 chip enable: this signal enables the lower 256
bytes of user RAM.

RAM 1 chip enable: this signal enables the upper 256
bytes of user RAM.

PORTFX goes low whenever the 2650 executes an ex-
tended I/0 instruction with an address between H'F8'
and H'FF' inclusive. This signal enables the IN-
STRUCTOR 50's I/O device addresses to be decoded
with just three address bits.

USRPORT goes low whenever the 2650 accesses the para-
llel I/0 port with an extended I/O instruction
(address H'07').

This signal goes low when the 2650 executes a memory
reference instruction that specifies address H'OFFEF'
USRMEM enables the parallel }/O port when the port
address select switch is in the MEMORY position.

DI/O goes low when the 2650 executes a non-extended
I/0 instruction that specifies port D. If the port
address select switch is in the NON-EXTENDED position,
DI/O enables the parallel I/O port.

CI/0 goes low when the 2650 executes a WRTC instruc-
tion. This signal is used by the forced jump logic
for breakpoint detection.

MON goes low whenever the 2650 fetches an instruction

or data value within the monitor's address space
(H'17C0' and H'1FFF').

7-6



7FFF

AVAILABLE
A, FOR Ju
» USER RAM Y
EXPANSION
2000
1FFF
USE
MONITOR
FIRMWARE
1800
17FF sE
17¢0 MONITOR RAM
17BF USER PROGRAM
. DATA STORAGE RAM
1780 FF
177F
NOT F8
AVAILABLE F7
1000 ‘OFFF’ IS
OFFF <—} ADDRESS OF
1/0 PORT
AVAILABLE
FOR
USER RAM
EXPANSION
0200
01FF
SUPPLIED
USER RAM
0000 00
HEX HEX
ADDRESS MEMORY ADDRESS
Figure 7.3:

7-7

RESERVED FOR
USE MONITOR

AVAILABLE
TO
USER
PROGRAM

| ‘07' 1S ADDRESS
OF 1/0 PORT

EXTENDED 1/0

INSTRUCTOR 50 Memory Map



Parallel 1/0O Port

The parallel I/O port consists of an output latch, input switches,
and port address decode logic. The port address decode logic
generates a port enable whenever one of the three following con-
ditions are met.

1) The 2650 executes a WRTD or REDD instruction.

2) The 2650 executes either a WRTE or REDE instruction that
specifies H'07' as an extended I/0 address.

3) The 2650 executes a memory reference instruction that spe-
cifies location H'OFFF'.

The Port Address switch selects one of these signals as
the parallel I/0 port enable.

Whenever the I/0 port is enabled and the R/W control line spe-

cifies a write operation, the value on the data bus is strobed
into the I/0 port output latch. This latch drives the I/0 port
indicator LEDs.

The I/0 port switches are one of four inputs to a data bus multi-
plexer. Whenever the I/O port is enabled and the R/W line indi-
cates a read operation, the I/0O switch levels are asserted on the
data bus via the data bus multiplexer.

Keyboard and Display Logic

The INSTRUCTOR 50's primary man-machine interface consists of an
output device, the eight-digit display, and two input devices —
the function and data entry keyboards. Together they provide an
inexpensive human interface to the microcomputer.

The display digits consist of seven discrete LEDs arranged in a
rectangular array or bars and an eighth LED that serves as a
decimal point. There are several methods of driving a seven-
segment display with a microprocessor. The most straightforward
approach is to provide a separate output port latch to drive

each individual display. With this approach, the microprocessor
simply writes a byte to each output port, corresponding to the
segments required to form the desired character. While the direct
drive approach is the simplest to conceptualize, it also requires
the most hardware to implement. However, the basic rule of thumb
in microcomputer design is to eliminate as much system hardware
as possible with program logic. Toward this end, an alternate
display drive method that requires only two output ports is used
in the INSTRUCTOR 50.

7-8



The first output port is a latch that drives the segment select
lines connected in parallel to each of the eight digits. The se-
cond output port, an eight-bit latch, enables only one digit at

a time. With this structure, the segment select lines can be time
shared among the eight digits. The 2650 first enables a digit
with the digit select output port and then writes that digit's
character segments in the segment select output port. The pro-
cess is repeated for each digit in a sequential fashion. If each
digit is illuminated at a sufficiently fast frequency, about 100
Hz, the entire eight-digit display appears flicker free. Thus,
considerable savings in display drive hardware is realized by
substituting program complexity for output ports.

Because of the display's high-current requirements, the two out-
put port latches require current buffering. A darlington tran-
sistor array on the output of each latch supplies the required
current.

There are several methods of interfacing a microcomputer to an
input keyboard. Here again the primary objective is to minimize
the system hardware by placing as much of the control logic in the
program as possible. The keyboard scan approach used by the
INSTRUCTOR 50 arranges the two keyboards in a matrix. Since each
function and data key is actually a two-terminal switch, a matrix
can be formed by grouping the terminals of each switch into
columns ‘and rows. This organization is illustrated in Figure 7.4.

Referring to Figure 7.4, the column select signals, COL 1-COL 6,
are driven by an output port, and the two sense signals, KRO-KR3,
serve as the inputs to an input port. Given this structure, the
2650 can scan the keyboards to detect a switch closure as follows:

1) The processor writes a byte to the column select output
port that drives one of the column select lines low.

2) The processor reads the row sense input port. If any of the
keys in the selected column are depressed, a low is sensed
on the corresponding row sense line.

3) The process is repeated for each column.

The keyboard interface column select operation is identical to
that of the display digit select. Hence, a single output port
serves both interfaces. The row sense input port is another in-
put to the data bus multiplexer. When the 2650 executes an REDE
instruction that specifies the row sense input port, the row
sense signals are returned to the processor on the data bus via
the multiplexer.

7-9



€W

A<D |

L "

0 dM

JNOART pIROQAdY '/ 2INS1

E| 3 a o)
-o- o o _ —o
g \4 6 8
-—0 A.I.Aw -0
o o o 0—
L 9 S . 14
-0 O— O -O-
€ r Z L 0 144 SYOM
- -—0 iv -0
9102
<5109
v
<102
<£109
7109
(& 109]

1' Y

< L 100

7-10



Referring again to Figure 7.4, you will notice that four of

the function keys, SENS, INT, MON, and RST, are not included

in the switch matrix. The reason for their absence is that

the functions they perform are independent of the monitor pro-
gram. Since RST resets the 2650, this switch is connected to
the 2650's RESET pin (after being OR'ed with the power on re-
set signal). Likewise, the SENS key is connected to the 2650
SENSE input pin. (Actually the 2650 SENSE pin is used for both
the SENS key and the audio cassette interface. The signal
presented to the 2650 depends on whether or not the 2650 is
reading data from cassette). The INT key is connected directly
to the INSTRUCTOR 50 interrupt logic, and the MON key is con-
nected to the forced jump logic. The operation of these two
keys is described under forced jump logic.

The Cassette Interface:

The cassette interface is unique among the INSTRUCTOR 50's I/0
devices in that it communicates with an analog system, a cassette
tape recorder. In converts microprocessor-generated logic

signals into an audio waveform for recording data, and converts
the audio waveform returned from the recorder into a digital pulse
stream that can be decoded by the processor when data is being
read from the cassette.

The INSTRUCTOR 50 uses a two-bit output port for recording data
onto cassette tape and a single-bit input port for reading the data back. Figure
7.5 illustrates the record waveforms required by this technique.
The two signals, FREQ and ENV, are provided by a two-bit output
port. These signals are combined with an open-collector NAND
gate to form the write signal for the cassette. As shown in
Figure 7.5, six pulses are used to record a 'zero' on the
cassette, and three pulses to record a 'one'. The only excep-
tion to this recording format is the last bit of a byte. Six
additional pulses are recorded for the last bit of a byte to
mark byte boundaries (i.e., a one is nine pulses and a zero is
twelve pulses).

Since only a single bit input port is required to read data back
from cassette, the 2650's SENSE pin is used for this purpose.
However, before the audio input is presented to the SENSE pin,
it is digitized by a Schmidt trigger. The Schmidt trigger has
about 1.5 volts of hysteresis that provides the read logic with
necessary noise immunity.



OUTPUT

1

T0 U U ——u
CASSETTE
0 1

FIGURE 7.5: CASSETTE RECORD WAVEFORMS

7-12



Interrupt Logic

The INSTRUCTOR 50 can respond to interrupt requests from three
possible sources: the INT key, the real-time clock derived

from the power supply line frequency, or the S100 bus interface.
As mentioned previously, interrupt source is determined by a
switch located at the bottom of the INSTRUCTOR 50 case. This
switch selects between the INT key and the real-time clock. A
jumper option enables interrupt requests from the S100 bus inter-
face.

The selected interrupt request source is input to a flip-flop
that is set when an interrrupt request is received. The output
of the flip-flop is connected to the INTREQ pin on the 2650.

The 2650 responds to an interrupt request by asserting INTACK.
INTACK, in turn, enables a tri-state drive that places the in-
terrupt vector H'07' or H'87', depending on the position of the
DIRECT/INDIRECT switch on the data bus. INTACK also resets the
interrupt request flip-flop.

Forced Jump Logic

The INSTRUCTOR 50's Breakpoint and Single Step commands are
implemented with a combination of firmware and hardware control.
This hardware portion is called the forced jump logic. The forced
jump logic returns program control to the monitor whenever a
breakpoint is detected, after a single user instruction has been
executed in the step mode, when the MON key is depressed, and
when power is initially applied to the INSTRUCTOR 50.

The forced jump logic consists of the fcllowing logical elements:

1) The Return to Monitor Sequencer - This sequencer is respon-
sible for returning program control to the monitor when the
2650 is executing a user program. The sequencer consists of
a programmable counter and a 32 x 8 PROM. The PROM contains
the data values of an absolute branch instruction. When
the sequencer is active, the forced jump logic disables the
INSTRUCTOR 50's normal instruction fetch mechanism and re-

turns the absolute branch instruction stored in the PROM.
The 2650 initializes the sequencer by loading the counter
via an extended output port.

2) The Last Address Register - The Last Address Register (LAR)
saves the last address issued by a user program before pro-
gram control is returned to the monitor. This address
points to the next instruction that the user program would
execute 1f the return to monitor had not been activated. The
monitor program reads the LAR to determine where the user
program should resume execution after a STEP command has
been completed or when a breakpoint is encountered.

7-13



3) Control Logic - The control logic performs general
housekeeping functions such as loading the LAR, inte-
grating interrupt requests with the return to monitor
state sequencer, and loading the programmable counter.

The forced jump logic is enabled when power is first applied
to the INSTRUCTOR 50, when the MON key is depressed, when a
breakpoint is detected, and when the monitor program executes
the STEP command. The resulting action taken by the forced
jump logic when one of these events occurs is described below.

Power On (POR) or MON Key Depression

When power is applied to the INSTRUCTOR 50 or when the MON key
is depressed, the 2650 is reset. The 2650 responds to a reset
by clearing its internal program counter and fetching the in-
struction located at byte zero, page zero. However, when the
2650 places address H'0000' on the address bus, the forced jump
logic disables the normal memory access mechanism and returns

a NOP instruction value to the 2650 via the data bus. The 2650
executes the NOP and attempts to fetch an instruction at the
next sequential address H'0001'. This instruction fetch gene-
rates an operation request (OPREQ). OPREQ is used to increment
the sequencer counter. In this state, the return to monitor
sequencer places the first byte of an unconditional branch in-
struction on the data bus. When the 2650 receives the BCTA, UN
op-code, it generates two more OPREQs to fetch the branch add-
ress. Each OPREQ increments the counter and the PROM places the
beginning address of the monitor, H'1800', on the data bus. At
this point the 2650 executes the branch to monitor, and the forced
jump logic returns to the idle state.

Breakpoint Detection

If the user has specified a breakpoint, the monitor program in-
serts a WRTC instruction at the breakpoint address specified.
When the 2650 executes the WRTC instruction, a control signal 1is
generated that produces the same results as the POR signal, and
program control is returned to the monitor. A monitor software
flag distinguishes this entry from a POR or MON key entry and
causes a branch to the breakpoint routine.

Single Step

The execution of a single 2650 instruction in response to the
STEP key is an excellent example of combined firmware/hardware
control. When the STEP key is depressed, the monitor program
fetches the instruction pointed to by the Program Counter and

7-14



calculates the number of OPREQs required to execute the in-
struction. The OPREQ counter (an extended I/Q port) is then
loaded with a value that corresponds to the number of OPREQs.
The monitor then restores the user's program registers and
status and branches to the instruction to be stepped. When

the 2650 executes the instruction, the OPREQ counter, beginning
at the present count, addresses '"dummy states' of the return

to monitor sequencer. That is, the locations addressed are not
output on the data bus. When the last OPREQ of the instruction
occurs, the output of the return to monitor PROM is enabled,
and subsequent OPREQs return the unconditional branch to monitor
instruction bytes to the processor.

If an interrupt request should occur during execution of the STEP
instruction, the 2650 waits until the instruction has been
completed before asserting INTACK. Conditioned by the forced
jump control logic, INTACK becomes an address bit for the return
to monitor PROM. While INTACK is high, another address bit re-
flects the position of the DIRECT/INDIRECT switch. In concert,
these two address bits force the sequencer into one of two in-
terrupt handling sequences: one for direct interrupts and another
for indirect interrupts.

S100 Bus Interface

The S100 bus interface consists of tri-state drivers and re-
ceivers and a Field Programmable Gate Array (FPGA) which pro-
duces the S100 bus signals from logical combinations of 2650
control signals. Unfortunately, the S100 bus is far from stan-
dardized. Many of the signals are repetitious and different
peripheral manufacturers make different demands of the bus.
The FPGA enables you to modify the bus interface to meet any
specific needs you may encounter. A detailed description of
the S100 bus interface is given in Section 6.

System Power

The INSTRUCTOR 50 obtains its system power from one of two
possible sources. The first source is an A-C wall transformer
supplied with the INSTRUCTOR 50. The transformer provides the
INSTRUCTOR 50 with 8 VAC (rms). On board, the A-C input is
rectified, and the resulting D-C voltage is applied to a three-
terminal regulator. The regulator supplies 5 VDC at 1.5 amps -
the system power requirements of the INSTRUCTOR 50. The user
may optionally change a wire jumper at the bottom of the prin-
ted circuit board to select unregulated 8 VDC from the S100

bus interface as input to the regulator.



In addition to the rectifier, the A-C input to the system is also
applied to the resistive divider network. The reduced A-C vol-
tage is input to a comparator that outputs a 60 Hz real-time clock
(50 Hz in Europe and Japan). This real-time clock is available

to the interrupt request logic via a select switch at the bottom
of the printed circuit board. The wall transformer can be used

to drive the real-time clock even if system power is derived from
the S100 bus interface.

The USE Monitor

Without question, the most important component of any micro-
computer (or any computer for that matter) is the system program.
Every function or operation performed by a microcomputer is
accomplished by executing a sequence of instructions within the
system program.

Basically, the USE monitor is a collection of separate routines —
one routine for each system command. A brief functional des-
cription of several routines with illustrative examples is provided
in Section 4. This section provides a brief description of the
command executive - a section of the monitor program that links

the various command routines into a cohesive system program.

Figure 7.6 is a flowchart of the command routine executive sec-
tion of USE. Whenever the forced jump logic returns program con-
trol to the monitor, monitor execution begins at H'1800', the
first address of the executive. Beginning at this address, the
first operation is to save the 2650 registers and Program Status
Word. (These values are restored before program control is
transferred to the user program). The next operation is to

check certain software flags to determine how the forced jump
logic was enabled. If it was tirggered by a breakpoint (WRTC in-
struction), program control is returned to the breakpoint routine.
Similarly, if the forced jump logic was activated by the com-
pletion of a single-step sequence, program control is returned to
the single-step routine. The alternatives to these two entry
modes are power on and MON key depression. If the executive was
entered via either of these two modes, the executive clears the
breakpoint and step flags, since they may be on even if entry to
the monitor was via power-on. Next, the display buffer pointer
is set to the "HELLO" message table, and the DISPLAY subroutine
is called. The monitor remains in this routine until a function
key is depressed.

Upon returning from the DISPLAY subroutine, RO contains the
function key value. This value is used as an index to fetch a
command routine address from the command address table. The
address thus accessed is used for an absolute branch to one of
the command routines. The executive is re-entered from any com-
mand routine when a function key is depressed. Hence, a new

7-16



RETURN
FROM STEP PO!

POR BKPT DETE
WER ON (WRTC)

l

i .y

H'1800"

SAVE USER
REGISTERS
AND
PSW

NO

CLEAR
STEP AND BKPT
FLAGS

!

SET DISPLAY
BUFFER POINTER
TO “HELLO"
MESSAGE

'

CALL
DISPLAY
SUBROUTINE.
RETURN WITH
FUNCTION KEY
VALUE IN RO

FUNCTION
KEY DEPRESSED \

(FROM ANY ROUTINE)

USING FUNCTION
KEY VALUE IN RO,
FETCH COMMAND
ROUTINE ADDRESS

!

BRANCH TO
COMMAND
ROUTINE

'

;" (MUST BE MON KEY ENTRY)

> G

O

/

Y

\

A

Y

SSTEP
SINGLE STEP
ROUTINE

WCAS
WRITE TO
CASSETTE

ROUTINE

REG
DISPLAY AND
ALTER REGISTERS
ROUTINE

RCAS
READ FROM
CASSETTE
ROUTINE

ALTER
DISPLAY AND
ALTER MEMORY
ROUTINE

GO
(RUN) BEGIN
PROGRAM
EXECUTION AT
CURRENT PC VALUE|

-(»)

Figure 7.6: USE Command And Routine Executive

7-17

SCBP
BREAKPOINT
ROUTINE




command address is accessed, and the monitor again branches to the
specified command routine. Refer to the USE Program Listing in
the appendices for detailed information on the USE routines.

7-18



APPENDIX A — THE 2650 MICROPROCESSOR

NOTE: Refer to the Signetics 2650 Microprocessor Manual accompany-

ing this document.

A-1






APPENDIX B —
INSTRUCTOR 50 SYSTEM SCHEMATICS






4

DASH NO ] NEXT ASSY

f Y

3.58 MHZ

: |
Sl o -
9 8|S USER MEMORY
1060 9 80 1
3 a 12 i
39 5" |
2 2112-2 2112-2
ADD 8l 2] I \ADO_ af, 1p,}2 DO/ ADO_ Alps 1o/} 2 B0/
19 AD Bl 28e NADL_3|n, 100 D1/ NGB 3|, 1oul0 D1/
50 AD2 z0];. 053 N\ADZ__ 2la, 105l D2/ ADZ 2l palll_D2 /]
£ 3 2115 2 NADZ | z SCERE VO NEREYY
Y] AD Is L53 D4 g 104 AD4__15] “
AD4 221, DBa N\ADA_i50p, Ao
30 | AD 5 23 \ADS ) As ADS 5/:\5
= [ AD 24l o8s | Nooe—2 14 NADG &lpr ol 4
B2 .6 le DR o RW T e
83 AD7 231, DB NADT__7n, el NADT Ta, e pt
e ADS 2el; '
AD 9 2775 xo |34_REMOCE
= AD 10 28|, | [3E_RAMhCE
22 | AD1I 29]1 z2112-2 202 2
- I ADI2 ET | ap0 Al 15120 pa ] Naoo 4l el {ea]
22 FERSTOET] NAD 3|y, o, D5/ EYSTIEY PSR 1) I T
85 T 32\ 2656 N\AD2__2 10s_| D6/ NADZ_2|p T oe
86 ! AD1A DIT T omr ‘ Az 103 7 ADZ_Zine  10af4DC
| M/ IO E15 A NN AN [ I8 IG5 403 _Yas 10s
\_WRP 17 T 10 CLOCK I | ADA Aa 5 \ 5] Aa &
| NEy ) xe [ FORTEX INVCE NI
‘ %y 37 DSRPORT ADe %’Ac R P4 \ARE LA R
14 |2 UK MEM ' AD7 A, cEpdia \AD?_ a, (ipdg3
| N Cli s ol
JOPERG ne HDIO
1 | X & MON |
b4 l__ Tis 7 I
ez DOPREG.
\\OFREG_ 9
R 52\8
> ay MEMINR 10508
SENSE
3a2 2ENSE
3a2 NTR .
2p4 —POR !
2pp RESET 3
Oz JFEeED
MON 2
281. 3a4 MON N\ S i
m/T0
' B / 13]L508 T
EERELC s | : R am
2
PRDY z@_‘ ‘ NS e o 387\ 3
72 - N\D4_5lp; a2}z 1503
'— | \M,DS a3 10
- —— CMD_
2A3 CMD ] g
RIS RI4 FASI75
47K 47K | +5V 5V Aoy R~}
+5V R7 R8
! 2.2K 47K Y RO
ci , <
©)-ChS_PHONE )" b
. 3
i | 1UF 210 4|33
2.2X 4 |
l = CASSE
- RiZ
——
]l ATK
22K



v 2 | 1
REVISIONS
ZONE | ISSUE DESCRIPTION DATE APPROV AL
|  cPuU BUFFER cPu | cPU BUFFER |
| | S
—— - f T,
| ] 1 2A\
1 | W/R
A
; 1 ! RAM 1 CE Sa?
2112-2
|
Mo 10 280/ Atk ol4 | is[7aszaals | A ADQ
3la 10,10 DI /] | Pl KES A AD 1
2lp: 103l BZ/ D99 2 _33osusg et 17 3 ADZ
as  (papt2 03 N\DL___5] 9 132 ) st o6 141 AD3
She NDz___4] 10 1 31 2 4 NI =Y I A (R K AD4_ >2A3 B
mel N R e AR
d N v = 4 !
ki Rcl,?o_‘B ! 37 I _ 2 18 1 AD7J
| N Riw D EiE a [ |
74 ! | | 19
| Siaa | T
2nz-2 i | |
e 10,2404 | | ple e[74LS 244 ha /] ADB Y
3lar 1oop0L | DS 1oL I 8 29 4 | o 51 5] N, 5 AD3
2la;  1oal Do DS El 9 128 5 okd_t a 1o | ADI0
A3 10aH D7 l \M_;'_ | [10Te7 y 'Y E] 1| 7 3 ] ADL_ >2A2
18] A D7 1126 2 2 g 8 1 ADIZ
ARG 7 DBUS 7 ADRIZES—S = eI
Slns AD13 E/NE
6 WA 8 5 1 ADI4 DJT
SR KW RIW ADM DT R T—5 2 1 W10
A cipdi3 l Sats7e 3 MITO ' {14 Jee
- o i ¢ 313 |
‘ 'i_fosusm ! = |
- — — ;. AOREN oo |22l e[7atszaa |us 4 oeera 2B1.2A3
= WRP z2 ) 13 [\ z ! WRP 13 1281
| 3 ACK ]/ 1231 ¥ 9 | B/w T <
DPAC N ' BL Z | 284 oo
10K | COK  mn/RET 40! 4 15&; ! FLAG 2 z
- 23 @
45V ot NS Y- @ i ER NTACK 28 -
R U sense C e T IaZAZ z
I NTR 8 Z T o7 dcre §
lelRESET | [ £ | -+
e a4 7B
LoREARL 54, 28)
DSRMEM 7 aa, 2B
%_;_g 2A4 28I
A4 ZBI
PAUGE 7,".7
UME M
— — — — — — — — = ENCASIN _;’2:43
i INCASIN
2% ;-»M'ZK 5\ oK ! 3h8
——— N\ ——4 + 5 17
o RT R3 OROq fvvv» : —3 CAS MIC ©)
38 );3 100K ICAS ADX Jz
1 NN . g ©
| _iliso3 e | o A
wE SOR
- : 99
! CASIN
‘ 3A4
22; PART NUMBER I DESCRIPTION "N%;_.
LIST OF MATERIALS
o T "
CASSETTE  1ff o TMAN_3:13:77 ~ Sinetics
CHECKED LOG‘C D‘AC‘JRAM CORPORATION
INSTRUCTOR RS
——voremer—— TS
ANGULAR ! MATERIAL OWG NO REV
T 272026-2| A
) !AC‘LVTI(SJOBNO SCALE lSNT ‘ - 4
XX * 01 XXXX * 0005
* 2 1 210-3020-102-230




oase o NExT assy J '

_ PIERSG
381 KRO-KR3 ? _ADRD 1(% z5
— 20RO & 5
USER PARALLEL T1/0 | N - LADRE Sic) |7t
Iz .
DDATD 3, 5 1 | 74LS
74L35‘2 73 LADR] 1 2co
0 3 2 23CR3LRIO v “‘DR’?’; a1 2y}t
o e Al | KR 12,
DL 4, @z o——o UDATI Y5r3
DL o3 a3eH w9 -. 2 g8
05 1A gg gg GE 4 | gL 0327 —
9- . 4
ez e O [ — T « g
D8 aa——o—u———q»—q—i | 53 -
384, 1A4 Uar ekl N L2327 -——-—”“RZ o (=
POR — LADRID 4 . 7 C
1504 | N RR2 A4 ';z Y
POR | UDATZ 3| -5 12
3A4 —40 13
15V | ARORI M, 74LS
LADRII ¢,
RIT-R24 | KR3 12 2c2 2y 9 [
T5VQ 10K LDAT 23
<3 j4c)
UDAT O =)
UDAT | ‘
UDATZ
UDAT3
LDAT4 i .
VDATS, — —— — — —
|
UDATG 35\ 12
UDAT7 ' EHEX DY
8
D2
— — — — — —— ——— —— — ———— —_—— | — 35 7
= 1504 I/0 DECODE | 1532 Fell o4
R/W 3[; 4
L 3 al, qho
W 6] 9
181 2) pe ] I 12|L5109
2B1 iA) DSRMEM 31502 | ‘EKM
DSRPORT 5@) 27 o2 ———0 2 , D:
281 1A L50Z 1 55 5 | L 45 ND:
2 iy 27 LS 109 5
47T\ 13 100/ Re7 5V 4l 34 NGT
" so Y 51 sk I - < AN
—L0 | K26 3 K O 7
47 \D 9 [ = I
8 1502 L
<2f_‘ 2 5V 5
0V0 459 ' I s
281 1Al 3)\.502 2"
3
10 ‘)—Z‘NE5 }
2Bl 1Al B)is32
T~ |
)% B |
3 a5 10 PN (g CI0 TS
4] 39 \ & ;@G szgmnﬁmm
ol o] olo|loja
sy es I 912/2/<|2|19/2|2
LS04 P B e e et B e
‘ s é‘m‘ | AEAEREREN]
2 12 - Mg ln K
T3|Ls 10 p 33 383acagacd
Ls0a = ‘ D 74L5273
J— - _ o
ZB1. 1Al b." Ta5139 ! 204 585383858 ¢
ZIAG|\YDC>4 “@0'0 CMD ay ' ADNEERLED
48 WIpZ 2EC REG 504 ‘ wrn
N z
3 y2be |3».1L DIG/XBD COL 384 ol 8- K
1B nqo7 <01 TYCCNT | | | ol91212924 2
=119 b —
‘ Els g Y t5V
. = ola 18]
] o -
. Ja@ AL INTACK
] = 3A4 Py
2




+ I T RELS:ONS
f:o~z wssus} DESCRIPT ON Cave 1.»9:;“\»
INPUT MUNX i 1 i
|
51 5[5 Bl A'.S_ 20 e 252 “
CRD 6 & LADR4 ¢ & 2C | o 825103 L1524 e
ORE_3,c) w00~/ Ao ypRas s DS g, DD? 2 RTED
D 4, —4ce (A S ——1 | N o (50 s> 35
D 3, 5 || 745283 uoAT4 [ 3 3 16 (7415253 5 BEMCE 317 o mw (28] o 202755
ADRL W20 DR5 | oo 11 RBMOCE za; £ |1__POBIN =2 /P————04 a 2 Doa EE]
ADRI W, , |2 DI L/ woR3] o0y Ly |2 D5 % 2a NEMWNR 2sly o —TPBIN Y = 2 35
RL_Zoc2 o Hacz na MON___Zely, g2 PWR M55 35
DAT! Roc3 UDATS —‘3‘263 Ay ESEMEM 29 3 SMEMR Do 1S 5 006035
3 T 1A = a1 DSRREOET 1lyS FeP——— 47] /o7 a e 08755
14 |2 = 14 12 a1 PORTER 2 ¢ D5 Sine J‘TE,—I / - :
Y i"El;:‘;?—z’—ls o SOUT [ -
1@ ADIADIC 4| Fafe—=—-{457] DO\ 2 DIOr&%
WRP 5 12 ) 3 i7 DI 53
14 ¢ 4 |2 '8 s el ¢ Dz o 1| D12
aq
LRG 6f ] s Eéw 7 {f FofB / 7 13 ord———| B
7 D2 LADRIA_5] 706/ UOPREG __ 8 /D4_n B Dl
1 qlCl Y | B4 —————— 1o / " - D 2!
2
7415253 URTE 3f, 5 |4 A" ; !1))11? 3
ADR7 _ W0l5¢p 7415253 % 43
/1 d 25, |2 03/ g
3 D3 $eocz py D 2
UDRT7 | 7415244
L /——ch3
\5 ?l ;IS
9 )12 BKPT € JUMP LOGIC
S
0
D4 R
— <
‘ 13 MEMINW |74 53 oo
L J4.5244 s
825123 L .= 29 |8 /] D7 2]
2] 7110 s, B4 )& N 13 DG z
D3 “DLK ENI EM 1 33 523 | A 14 DS ¢
\D2_s}’ ache 2. B2 | o8 12 DY S g1, 3B4
Dl 45 32 ggd L, = 1L 9 D3
D0 3 14 0], _ - 3 7 D2
5 |° AN ale  BofZ 5 A 5 DI
& p Aa Be
?ZSU Ll _ lC\_R O—4 — é’ Bsé 5 X 3 00
A7 Lo
5V 1 N 50 \.8 1 Jis
= v . 11500
2] a
<508 J 741.5244
A 509 30 P8 D7/ =
[3] { Do
K & 2
{4 D5 o
' 12__Da %5
ERE! 32
7 _Dbe 5
} RSB > DI 56 A
Jels el VA== i
a
et B o ; 5
n] 2{5le 97|z| 16 ]
:‘ ~—nMmMIT S
CJdJd0gdaQ
74L5273 /5
® _ S ~w
S5 83485 oo <3
|T3 NHEE LG ui /’ RDIRC FT
=] hJ — i INT o PART NUMBER l DESCR®T.ON s
e = LIST OF MATERIALS
[l g a P b CRAW ALTMAN 51077 TIE Emlll!tlcs
g g gl aa g g DESIGIER
Nl il LOGIC DIAGRAM conromation
RPROED NSTRUCTOR e anues e .
o TOLERANCES BUNNTYALE CAL FORNIA
m UVLESS OTHERWISE SPECIFIED 5
! - ANGULAR * MATERIAL OWG NO REV
X o 272026-2 | A
ot on xxx oo [FACILITIES 108 NO SCALE lsmz— 3 Py
.* 2 1 210-3020-102-230




4 9 v

DASH NO NEXT aSSY J
o T80 4
T
P r 2 A8 g7 =) I "
BHREEREEE 0 NEREEEEDR
-~
.
J - .
=30- K37
j % w'\:‘_n.
Al
- +5V
i |15)af 3)z] )0 0| w17 5] 14 .»3|:;‘ ‘;‘ " R
- 27K
26 a7 2. S8V e
LLNZ003 : z981
za - o
JaLsein s RE2BEEBE HAERERE BEEEEEEE = 5"3’
Do 3 a2 DG st} ' “ ok e - L %Y
DI 4 azls DIC 2 SEL
/ R4
0z 7 a3 [ DIG 3 SEL 47
2Al < p3 8 0al2 DIG 4 SEL L B
D4 3 5112 DIG 5 SEL =
47
05 o 14 aols DIG 6 SEL LM,
DG 7 a7He DIG 7 SEL
D7 18 o8l DIG 8 SEL
o=V
28aBOR £  4qr
a3 DIGIKBD COL N ex
28
7415273
N.DD 3 a2 SEG A
\D a4 Qa2 5 SEG B
D27 A SEG C
D3 8| P SEG D
Da 13| o5l2 SEG_E
\D5_W cols SEG F
_ De 17 o e SEG G
PR _9 D7 18 asl2 D. P.
MONKY D] 39 \
2A2 Tion R
3n2 22— 11 Y
2n3 _SEGC REG F,.
(504
@USEMSE _o
RGD 1K
+5v ¢—\N\/\/\1 33D R4>
- K
S5 SENS 504
251 Yol — 214308
1y ENCASTN !
VAN ENCASIN 50 3
211500
LAl —CASIN L <
(A4 DMON il i 51
341 —KIC 2le oo v
POR - | . _ O. s
2RS CINTACK 7\ 442 By aPp—o0 oY
RG3 1K 13/1527 ‘ > R58
5V Ras 37 - m N 220
INT 1K 3 4 = 45
381 & “AAAN i u 4 1K
R59 K c4a L5514 O rcq®
k 3304
BV RAG ;[__lout: 3’74 T R r,{,?,vv_}
RST K = s =
3B . VAAAN L 4 1T
R6I 1K lcs
BV Q'W\'V‘l R47 T 10ur 1504
381 MON 1K = _ 9 o8 x3 12
RG2 I g
10K (o AL
+5V T IDUF 4
PINT = 50yl
73} 7 — 5]




FE. SONS
ZONE | ISSUE DESCR'PT A N ~&TE VEA’““:»A\
T
i i
KRO -KR 3 cB4
o Lo “ . 2 2
v w i ' v
- o Iid o 1 39
3 3 S 3 g 3
N o ] U O (5]
, 210 5.7 G ESray 5
23 & ~ i KRO 3 2 3 2na
% 5/ /’2_ 5/3 ¢ )’4“ WeAs B
3 TR 1
o oO—+—0 o2 A ¥RI O 3 o= 3AA4
<an Oq/ 94 >{ >/7 12 O REG 97524‘5
947K — 17
[ 2% %2 %% O \,4 / KRZ —O 14\_, O 33A4
R4 ){ S{ %{ 4 IB‘f)M/EM )‘354&"
L\/\A/j/\K/\ o o o KR3 5 20 ot 3pa
o/ $/ (L/ o/ zqorE/NT OR/UN
c %4 E F NXT 23
19 +8V
P {1 ]
Z0 18 >
¢ (o R =]
| CRI T8V g
] Y (
. + IN|arp5 [OUT o - - ,‘JHSV S
R48 RA9 +IC3 ]_ClO' 2 !I :
c7 3 (DM 47K 'K 470F XLUF tLF
GODODF ? I I I -
v L e °
19 —L 50
R50 R51 - RTC
z7Kk 22K 5 ‘;M393 3A4
1 & RS4 IC VCC [GN TC NCC [GND
Tror k52 R53 oK 2650 39| 21 7JALSI0 |14 | 7
= 33K 33k 2656 |33.35 13 74L5139 | 16| B
SENSE _ \aa L — 2112-2 6 | B 74.5109 |6 | 8
- - 74LS 243 | 14 7 TALSGH! | 8
7415244 | 2D | 1O 825123 | 16| B
a 50 3 INTR 74L508 4 | 7 74aL514 e T
Z2|.500 ‘A4 74LS0D0 |14 | 7 VDLNZOD3 | — | B
74LS03 |14 | 7 7AaLS27 (14 ] 7
7A1l5175] 6] 8 Sats51 a7 1A
9 O (M393 8 | & BZS5103 | 28] 14
o I° A5V "3ls273 | 20| 10 7ALS%4 |14 7
5 74L5253 | 16| 8 TA0D . | V4] 7
R58 741504 | 14 | 7
T +8V] GND
)45V 2z0- 741502 | 14| 7 (.- rev]
Vi P 741532 | 14 7 L 2981 |90
RCA SEEN 7aLs11 |14 | 7
3501\]
_:lT_WAf RESET g;s PART NUMBER I DESCRIPTION o
3IA4 .\ A4 a7 or matemass
[SFam LTMAN G -27-77] sm“nnns
MONKY  4aa  7az e LOGIC DIAGRAM conpoRaTION
) arRovED INSTROUCTOR R
TOLERANCES BomNYVALE AL TOAN A
UNLESS OTHERWISE SPECIFIED
GuLAd * 3 NATE AL SWG NC ;ne\
S G 272026-2 | A
o o - 0008 FACIL TIES JOB N T svalE ]$~'3 TF 4
* 2 1 210-3020-102-23¢




cg
X4
IDLE
IDLE
I6LE
3

a

U

[ule]
HI ADLR BYTE
ANTE

LO ALLR
1

o
..{.__t _—
o}

~ [INDIRECT 0T vELT:

&)
)
I
o

z2a ‘1a ' va

0|0

0z

[agks}

v}

!

La 'va

O |00 O |DIKLECT INT VECT

olo
o|o
[oX Nl el Na]
olololo
olololo
olojolo
Oo|l0j 0|0
olo|o]o
olo
olololo
ololo|o
olo

olojojo
olo

c

ol ~[
olof
olof
olo|ojo

|
|
I
|
i
|
|
\
\
)

|
\
|
I
I
!

ojojojojo
9}
0|0 1|D

d04L5 MAIND

ouTPLT

O.,.
O
(@]
0

olololololo

o]
C

vyO1 40av LS w1

[}

JTIAVYNI SNA viva

f
o

&
-~

B7 |B6(B5|B4|B3({B2|B1 {BO
ofo|ojojofojolo
ojojo|0jOjO{0} O
ojojojojo|ojo|o
oljojojolo|ololo

ololo
olo|o
olo|o
olo|o
ololo]
ololo
ololo
ololo
ololo

I
Ojojibjojolojo o

(
Ooloj0;0|0[0|0}|O

(5}
ojo|o
ojlo|o
[oR{®]
clolo
Ol
]

O

o

e T e S
.

PROGRKAM TARBLE

|

O
(e}
o
[a]
o
\

\
(o]
|
o
\
(]
1

i
I
!

\
\
o
o
|
u
3

[eR NN Ns]
oo

|
|
\

o
0
i
|
olojo
ojo
(o]
e}
\

o]
0o|joj0o|0O
ojo|o
0|0
o|0

(o]
o]
o]
0
1
\
|
1
|

oO|jo|O0j0O|0O
o|O0|O|O
o|O0|O
o|o}o

e}

(@]
[e]

|
\

|
|
|
|
\
|
!
|
!
|
|
|

825123

ADDRESS
OCTAL |A4|A3]AZ|AlAD
00
o}]
o2
03
05
20
1
22
23

g 4 fe =4

30
\
2
3

35

36
-

HEX
oz
03
05
o6
osa
o8B
ocC
oD
OF

4
5
[}
7
8
)
A
B
[
D
E
F

\
|
|
!
|
1
|
|
|
\
J
|

X
X
X

/

WO NS

X
X
A
X

X
X

1
!

A

VNV IWNS

!
\
|
)
!
|
\
|
|
|
!
\

1404 (WS

o|o0l0o|lo

~Now

Qta

XXX
Al X)X
XXX
AR KR
XAl A
AR X
XX
AIX| X
XXX
X[ X[ X
XXX
X|iX{x|o|o
OO0 X

XTAaL

[OR 1]

|
|
\
|
|
1
|

|

ojo|lojojojo|o

BY /4

WIN ASA

\
l

0

E|E|E |E|E
X

21314|5|6]|7|8]9|\0

[aR o]

X4 120d

|
|
)

301 W

OO X X|{O] XX
OIDIX|X|O|O

e}
XA X
ALXTX
X|X| X
O|OIX| R
DO XX
OO} Al X
|

I
\

KO [X1[X2[X3|X4| X5|Xe|X7

300 W9

il
2656 SM) PRODGRAM CODING
AO
Al
a2
A3
A4
A5
AG
A7
A8
A9
ALD
Al
e
A13
Ala
0PREQ
WRP

M 10

NEXT ASSY

FUNCTION SELECT|E|E| E

DASH NO

CLOCK SOVRCE
CLOCK DIVIDE
NO DISABLE




v 2 1
o st T or T,
TABLE
TPULT
Todles 8251 ®3  rrooram TaBLE
ol o) ()] INPUT VARVARLLE
To o \ | F ouUTPUT
olol o 8 POLARITY I+4 |Is |Te |I7 {18 |XIs | Ia|Ie|1c]Io}le |IF
o|olo|o 20 ENABLE
|ololo|o IDLE F@ L — =l H|H|H|H|H]|H|H]|H|H]|- %Trgu'r
040180 S Fi L =3 N NVE VRN NV VRN (VIR VI (VI OIS OIS i
|clolo]o DATA
IO |0 0|O INDLE F2 H - |- |Hi{H|HIH IR |HIH|H]|H]|=-]|S0OUT
ofololo ,
olololo a F3 H |- lkrir|rlulHlHR]u|H]|-]siNe
Tolojolo] " N
5lolals . F 4 H - =i H|H|H|IH]|HAHIH|[H]|H]|-|SMIFE
jo0jeiolo —" Fo L -l-dHlnfnlafA A |HH]nA]|-]Pwe
olo|olo 2
ojoiolo N Fo H -l =-lH|HIH|H|HH L AHIH]|~ |IPDBIN
ololofol | -
olojo|o — F7 H wl H|H | H H R |- [mwerT
Jo]oloTofmmecT WY VECToR ] —y Rk SUOTE |
oty a DIRECT ACTIVE HIGH = H AN E R E “|EE e E
jeje viop i ) AcTive ow: L | €2 |5 |2 |93 al t‘J 5 E: lC E
olojoio Y .
|lolololo -
lojelo|o
olojolo (P ERRUPT
olojlo|o 2PhoE
clo|z TalinoikecT ot vecToR —_
olo D {O] n1 ADDR BYTE .
ol -l -7 o] to AbCR axTE INDIELET
o|o 1 IF
o]0 o) 8
olololol e6
lolo ol
A
Q
Q REQ NO
\; m‘ C: - o LIST OF MATEAIALS
aj=|s . S{gnetics
R INSTRULCTO R CORPORATION
eovED PROGFAM TABLES s aoues
e Foc s T,
e o rxxx * 00os [FACILITIES J0B NO SCALE lsvﬂ P oF +
* 2 1 210-3020-102-230

TS A A o

-



APPENDIX C — USE PROGRAM LISTINGS






THIN ASSEMBLER VER 2.8

LINE ADDR OBJECT E SOURCE

B2

paa3

0084

a0a3s

6886

6007 Beae
6868 6861
0669 8002
2010 @862
eall

6812 @oe1
8013 6e0a
0814 @882
#815 @ee8:
8016 6000
0017 @oel
0018 0eaz
8819

8628 86Co
8021 0820
0022 9010
@823 @088
3924 8994
0025 P02
0626 0861
0027

8028 00888
0829 @ada
0930 0820
6031 087
8832

8033 Bea7
6834

8833 @8a7
8836 9887
8037

8038 POFE
8839 @er9
8040 @ar9
8041 BarFA
8842 @OF8
8843 9OFS
6844 B6FB
6845 GBFD
8046 @arC

INSTRUCTOR 5@ PRGM 11/1/78 PRGE @aai

*PROGRAM WRITTEN BY DRAVE WOTRING

FokokAdok k. oob o ob s bopob oK KOk ¥ v

op ook fosok ok

% EQUATE TRBLES

*

«  REGISTER EQUATES
R EU @

RE EW 1

R B 2

RZ EW 3

* CONDITION CODES

P OEW 1

2 U @

N OEW 2

T O 2

I TR

6T EW 1

T TR

* PSH LOMER EQUATES
0C  EQ  HCR
¢ EW W29
RS EQ  H1e
W E Hes
OVF  EQU  He4
CM  EQU He2
C  EW  Het
* PSH UPPER EQUATES
SENS  EQU  H'8e’
FLAG EQU K49’
I B W
P EW  He
x 10 PORT DEFINITIONS
LEDS EU  H8y
+ INTERUPT YECTORS
UINY EQU W87
UINTVI EQU  H'87
* HARDWARE. DEF INITIONS
KBDIN EQU  H'FE’
SEG  EQU  HFY
DISP EQU  SEG
DIGIT EQU  H'FA’
CTBYT EQU  HF8’
RS EQU  CTBYT
OPRCT EQU  HFB’
LADRH EQU  H'FD’
LADRL EQU  HFC’

REGISTER @
REGISTER 1
REGISTER 2
REGISTER 3

POSITIYE RESULT
ZERD RESULT
NEGATIVE RESULT
LESS THAN
EQUAL TO
GRERTER THAN
LINCONDITIONAL

CONDITIONAL CODES

INTERDIGIT CARRY

REGISTER BANK

1=WITH B=WITHOUT CARRY
OVERFLOK

1=L0GIC B=ARITHMETIC COMPARE
CARRY/BORROH

SENSE BIT

FLAG BIT
INTERRUPT INHIBIT
STACK POINTER

UJSER EXTENDED 10 PORT

USER DIRECT INTERUPT VECTOR
USER INDIRECT INTERUPT VECTOR

ADDRESS OF KBD IO PORT
I0 ADDRESS OF SEGMENT DRIVER

RDDRESS OF DIGIT ENRBLE

ADDRESS OF CONTROL BYTE

RDDRESS OF CASSETTE INTERFACE
ADDRESS OF OPREQ COUNTER

ADDRESS OF LAST ADDRESS REG HI BYTE
ADDRESS OF LAST ADDRESS REG LO BYTE



THIN RSSEMBLER VER 2.0

LINE RDDR OBJECT E SOURCE

0048

8043

8050 @oea
6a51

8852 17C8
Be52 17C6
0834 17C8
0833 17CA
8856 17CC
8857 17CD
0858 17CF
8859 17D
08608 1701
8861 1709
8862 170D
8B62 170F
0664 17E1
8065 17E2
8866 17E3
#0967 17ES
8868 17E6
0869 17E7
6878 17t8
8871 17EA
8a72 17tC
8872 17EE
8874 17EF
8875 17r0
8376 17F1
a77 17F2
0878 17FE
0879

INSTRUCTOR 58 PRGM 11/1/78 PAGE @082

ORG
*
SCTCH RES
TEMP  EQU
ERD  RES
BAD  RES
BPD  RES
BPL  RES
BPF  RES
SSF RES
DISBUF RES
SRYREG RES
MEM  RES
FID  RES
B(C  RES
BSTT RES
T RES
LB} RES
T2 RES
2 RES
LADR  RES
SLADR RES
KFLG  RES

RES
ALTF  RES
RESTF RES
IFLG  RES
UREG RES
PWRON  RES

H’1808°-64 TRAINING CARD RAM ARER

[Ya =]

MR RPRPRARRERDORNERRRORERROEOR PR DD

& BYTE SCRATCH AREA

CTCH+6 TEMP STORAGE

STOP ADDRESS FOR HCARS

BEGINNING ADDRESS FOR WCAS

DATR TO BE RESTORED IN BRERK LOC
RDDRESS OF BREAK POINT LOC

BRERK POINT SET FLAG

SINGLE STEP SET FLAG

8 BYTE DISPLAY REGISTER

A PLACE TO SAYE R@ THRU R OF ONE BANK
RDDRESS FOR RLTER OR PATCH COMMAND
FILE ID FLAG AND FILE 1D

BLOCK CHECK CHAR

SRYE UNITS DIGIT

TEMP REGISTER

TEMP REGISTER

TEMP REGISTER

TEMP REGISTER

COPY OF LAST ADDRESS REGISTER

SRYE LOCATION FOR LADR

KBD SCAN FLAGS

KBD DEBOUNCE COUNT

DISPLAY AND ALTER FLAG

RESTORE REGISTERS FLAG

INTERUPT INHIBIT FLAG

STORAGE FOR USER REGISTERS

KHEN POWER ON THESE LOC CONTRIN H/5946°




TWIN ASSEMBLER YER 2.8  INSTRUCTOR 58 PRGM 11/1/78 PRGE @@83

LINE ADDR OBJECT E SOURCE

m Wk
26882 1300 ORG H’1889° BEGINING OF TRAINING CARD ROM ARER
80832
8854 *

8885 *SAYE ALL REGISTERS UPON ENTRY TO PROGRAM

@886 *

0087 *REGISTERS USED

/888 *

@089 *R8 THRU R3” PSU PSL

6690 *

8891 *SUBROUTINES CALLED

8892 *

@@93 *NONE

4094 *

2895 *RAM MEMORY USED

8096 *

@a97 *REG = R@

0098 *UREGH =R

2099 *UREG+2 = R2

0100 *UREG+3 =R3

a181 *UREG+4 = R4’

9182 *UREG+S = R2’

0103 *UREG+6 = R3/

0104 *UREG+? = PSU

"p105 *UREG+S = PSL

8166 *UREG+9 = PPSL INSTRUCTION OPCODE

8107 *UREG+10 = PoL

9108 *UREG+11 = RETC, UN INSTRUCTION OPCODE
8109 * '
0110 **
8111 *

8112 1860 C870 SAVRG STRR.R@ UREG  SAVE R@

8113 1882 13 SPSL GET PSL

8114 1883 C875 STRR, R@ UREG+S SAVE PSL

8115 1885 C875 STRR, R@ UREG+1@ SAYE PSL FOR RESTORE ROUTINE
@116 1897 12 SPSU GET PSU

8117 1898 C86F STRR,R@ UREG+? SRYE PSU

0118 189A 7620 PPSU  II SET INTERUPT INHIBIT

2119 186C 7519 CPSL RS CLEAR REGISTER SWITCH

8120 186E 963 STRR,R1 UREG+L SAVE Ri

8121 1818 CR62 STRR, R2 UREG+2 SAVE R2

8122 1812 CB61 STRR, R3 UREG+Z SAYE R3

0123 1814 7718 PPSL RS SET REGISTER SWITCH

8124 1816 C95E STRR,R1 UREG+ SAVE R1‘

8125 1318 CASD STRR.R2 UREG+S SAVE R2’

8126 181R CBSC STRR,R3 UREG+6 SAYE R3’

8127 181C 75FF CPSL 255  CLEAR PSL

9125 181E 7782 PPSL  COM DO LOGICAL COMPARES

8129 1828 S4FD REDE,R® LADRH  GET LAST ADDRESS HI BYTE
8130 1822 CC17ES STRA,R® LADR  SAVE IN MEMORY

8131 1825 S4FC REDE,R® LADRL  GET LAST ADDRESS LO BYTE
@132 1827 CC17E9 STRA,RG LADR+L SAVE IT

9133 182A 20 EORZ Re GET R 8

8134 1828 CCi7FL STRA,R® IFLG  CLEAR INTERUPT INHIBIT FLAG



THIN ASSEMBLER VER 2.@  INSTRUCTOR 58 PRGM 11/1/78 PAGE 8864

LINE ADDR OBJECT E SOURCE

8126

0137 *

8138 *

8139 *

0148 *PROGRAM ENTRY ROUTINE

8144 *

8142 *

8142 *DECIDES HOW RERCHED ENTRY POINT OF PROGRAM

8144 X

0145 1 POWER ON

8146 *2 SINGLE STEP

8147 *3 MONITOR PUSHBUTTON ON KEY BDRRD

8148 *4 BRERKPOINT

8149 x

0156 *

8151 x

8152 *

8153 Ak
8154 *

8155 182E @84E BEG  LODR.,R® PWRON [HECK POWER ON FLAG

8156 18308 E459 COMI,R@ H’59 RFTER POWER YALUE OF FLAG IS
8157 * H’9946"

8158 1832 9812 BEGL BCFR.EQ INIT  IF NOT CORRECT THIS IS POMER ON
8159 * GO INITIRLIZE THE MONITOR FLAGS
8168 1834 8849 BEGS  LODR,R@ PWRON+1 CHECK L0 BYTE OF POWER ON FLAG
8161 1836 E446 COMI,R@ H’46” IS SECOND BYTE CORRECT

8162 1828 986D BCFR, E@ INIT IF NOT INITIRLIZE THE PROGRAM
8163 182R aCi70e LODA, R@ SSF CHECK THE SINGLE STEP FLAG
@164 183D 9C49C3 BCFA, EQ SGLSTP IF FLAG THEN GD SINGLE STEP
8165 1340 8899 LODR, R *MON+L SEE IF BRERK POINT ENRELED
6166 1842 9C197A BEG2 BCFA.EQ BRKPT GO EXECUTE THE BREAK POINT ROUTINE
8167 1845 1B13 BCTR, UN MON MUST BE MONITOR KEY

0168 *



TWIN ASSEMBLER VER 2. @

INSTRUCTOR 58 PRGM 11/4/78 PAGE @ea5

LINE ADDR OBJECT E SOURCE

8170

ai71

ai72

8173

8174

8175

0176

8177

8178

6179

6188

0181

8182

7183

8184

8185

8186

6187

8188

8139

6150

2191

8192

8193

8194

8193

8196

8197

8198 1847 8459
8199 1849 CCATFE
82008 184C 8446
0201 184E CCL7FF
8202 1851 260
8203 1852 CC17DD
8284 1855 CC17DE
8285 1858 C881
8286 185A BC17CF
6207 185D 186F
8208 185F BC17CC
8209 1862 CCO7CD
8218 1865 ECI7CD
8211 1868 1864
8212 186A @781
8213 186C 9BES
8214 186E 28
8215 186F D4F8
8216 1871 CC1708
8217 1874 @51F
8218 1876 8694
8219 1878 BBFE
8220 187A 20
8221 1878 BBEC
8222 187D F&88
9223 167F 3816
8224 1881 460F

*

*

*KEY BOARD MONITOR ROUTINE

*

*

*REGISTERS USED

*

*R SCRATCH

*R1 SCRATCH

+R2 SCRATCH

*R2 NOT USED

%

*SUBROUTINES USED

*

+MOV MOVE DATA TO DISPLAY BUFFER

#DISPLY DISPLAY MESSAGE AND KEY BORRD SCAN

*

%

*RAM MEMORY USED

*

*PHRON POMER ON FLAG

*55F  SINGLE STEP FLAG

#BPF  BRERK POINT FLAG

*BPL  BREAK POINT LOCATION

*

*

INIT  LODI,R® H'59/
STRA, R PHRON
LODI, R@ H’46’
STRA, R® PHRON+1
EORZ RO
STRA, R@ MEM
STRA, R@ MEM+
STRR,R@ *MON+L CLEAR BRERK POINT FLAG

MON  LODA.R@ BPF  GET BREAK POINT FLAG

SET THE POKER ON FLAG
TO POWER ON YALUE H’5946°

GET AR @
PRESET INDIRECT RODRESS MEM

BCTR.EQ MONS  BRERK POINT NOT SET
LODA. R@ BFD GET BRERK POINT DATA
STRA,R@ *BFL  CLEAR BRERK POINT
COMA,RG *BPL  CHECK DATA STORED CORRECTLY
BCTR,EQ MONS  BRERK POINT CLERRED 0K
LODLR3 1 BRERK POINT DIDN’T CLERR
ZBRR  *ERR  GOTO ERROR

MONS EORZ R® GETR @

WRTE,R@ CTBYT CLEAR CONTROL BYTE

STRA. R@ SSF CLEAR SINGLE STEP FLAG
MONZ LODI.RY CHELLO-1 GET ADDRESS OF HELLO MESSAGE
LODI, R2 SHELLO-1

MONL  ZBSR +MOY MOVE MESSRGE TO DISBUF
MON4 EORZ Re SET FLAG TO WAIT FOR ENTRY

ZBSP. *DISPLY DISPLAY MESSRGE AND SCAN KEYBOARD
MON2  TMILR2 H’88°  CHECK COMMAND FLAG

BCFR, EQ ERR2 IF FLAG NOT SET ERROR

ANDL,R2 H'@F’  MASK COMMAND VALUE



THIN ASSEMBLER VER 2.8  INSTRUCTOR 58 PRGM 11/1/78 ' PAGE 8086

LINE RDDR OBJECT E SOURCE

8225 1883 teor7 COoMI,R2 7 MAX COMMAND YRLUE

@226 1885 19190 BCTR, GT ERR2 ERROR CODE VALUE TO LARGE
8227 1887 D2 RRL, R2 MULTIPLY INDEX BY 2

8228 1888 OEVEA4 LODA, R@ CMD,R2 SET UP AN INDIRECT ADDRESS
8229 1888 CCI7EZ STRAR8 T TO THE FUNCTION WANTED

8238 188E @EVBAS LODA; R@ CMD+1, R2

8231 1891 CCi7E4 STRA.RB T+1

8232 1894 1F97E3 BCTR, UN *T EXECUTE A COMMAND

8233 *

8234 *

8235 1897 @702 ERRZ LODLR3 2 INVRLID COMMAND SEQUENCE

8236 1899 @51F ERRI  LODI.Ri CERROR-1 GET RDDRESS OF ERROR MESSAGE
8237 1898 @684 LODI, R2 2ERROR-1

8238 189D BBFE ZBSR MOV MOVE MESSAGE TO DISBUF

8239 189F CF17D8 STRA, R3 DISBUF+7 KRITE THE ERROR NUMBER
0244 18A2 1B56 BCTR,UN MON4 GO LOCK FOR NEW COMMAND

8241 *

8242 *COMMAND ADDRESS TRABLE

8243 *

8244 18A4 1C91 CHD  ACON  MCAS  WRITE CASSETTE COMMAND

8245 18A6 1061 ACON  SCBP BRERK POINT COMMAND

8246 18R8 1BAC ACON  RCAS  READ CASSETTE COMMAND

7247 18AR 1A7E RCON  REG REGISTER DISPLAY AND RLTER COMMAND
8248 18AC 18B4 ARCON  SSTEP SINGLE STEP COMMAND

8249 18AE 1R6C ACON  ALTER DISPLAY AND ALTER MEMORY
8258 1880 1E59 RCON GO GOTO COMMAND

8251 18B2 187A RCON  MONd  ENTR/NEXT KEY IS NOT COMMAND
8252 *



THIN ASSEMBLER VER 2.8  INSTRUCTOR 50 PRGM 11/1/78 PAGE @ea?

LINE ADDR OBJECT E SOURCE

8254

8255 *

0256 *

8257 *SINGLE STEP ROUTINES

8258 *THIS ROUTINE WRITTEN BY BEC

8239 *

8268 * PROCESSOR TRANSFERS CONTROL TD USER PROGRAM
0261 * AFTER COMPUTING THE NUMBER OF OPREQ‘’S TILL

8262 * THE NEXT INSTRUCTION FETCH.

8263 *

0264 *

8265 *REGISTERS USED

8266 *

8267 *R@ THRU R2 SCRATCH

8268 *

8269 *

8270 *SUBROUTINES CALLED

8271 *

8272 *RLADR RESTORE LAST ADDRESS REGISTER

8273 x

8274 *

8275 *RAM LOCATIONS USED

8276 *

8277 L RDK LAST ADDRESS REGISTER

8278 T3 TEMP REGISTER

8279 *«TEMP TEMP REGISTER

0280 *SCTCH SCRATCH REGISTER

0281 *

8282 bk
0282 0000 oD EQU @ NEGATIVE NUMBER OF OPREQ’S
B284 *

8285 *

0286 *CHECK IF NEXT SINGLE STEP IS IN MONITOR RREA
8287 *

8288 1884 @C17ES SSTEP LODA,R@ LADR  GET MSB OF LADR

8289 1887 E416 COMI,R@ H/18° IS ADDRESS LT H’1ee8’

6296 18B9 1A6S BCTR, LT SSTEPL GO SINGLE STEP

8291 18BB E420 COMI,R® H’28° IS RDDRESS GT OR EQ H/2nea’
8292 18BD SAB4 BCFR. LT SSTEPA GO SINGLE STEF

8292 18BF 0789 LODILR3 9 NEXT SINGLE STEP ENTERS MONITOR
8294 18C1 9BES ZBRR  *ERR  GOTO ERROR

8295 18C3 847F SSTEP1 LODI,R® 127 SET SINGLE STEP FLAG

8296 18C5 CCi7D8 STRA, RB SSF STORE IT

8297 18C8 0420 LODI,R@ H’28  SET THE INTERUPT INHIRIT
8298 18CA CCi7F1 STRA,RB IFLG  SAYE IN INTERUPT INHIBIT FLAG
8299 18CD 7508 CPSL WC CLEAR WITH CARRY IF SET
0300 18CF 0601 SSTEP2 LODILR2 1 SET INDEX

0301 18D1 GEF7ES LODA, R8 *LADR, R2 GET SECOND BYTE OF INSTRUCTION
8382 18D4 CCA7E7 STRA,R8 T2 SAYE IT FOR LATER

8383 1807 @F97ES LODA; R #LADR  GET NEXT INSTRUCTION

8384 180A @3 Loz R2 SAYE INSTRUCTION IN RO
8385 18DB 471C ANDI,R2 H/1C  EXTRACT INSTRUCTION CLASS
8386 18DD @568 LODI R OYHD  SET OVERHERD OPREQ COUNT
@367 18DF 0665 LODI,R2 5 SHIFT OR MOYE COUNT

9368 18E1 F420 THI.R@ H’28 TEST FOR ODD OPCODE IN CLASS4



THIN ASSEMBLER YER 2.8

INSTRUCTOR 56 PRGM 11/1/78 PRGE 8088

LINE ADDR OBJECT E SOURCE

9309 18E3 9F1962
6319

8314

8312

€313 18E6 FAZF
0314 18£8 4707
0315 18ER BF7967
8316 186D C1
8317

0318

0319

0320 18EE 1F195€
o321

8322

0323

8324 18F1 3F196F
0325 18F4 @D17C6
0326 187 7508
0327

0328

8329

8330 18F9 GC17E7
8331 18FC F489
8332 18FE 1806
8332 1980 1B6C
8334

8335

8336

0337 1982

0338

0339 1962 AS8L
0349 1984 1868
8341 1966 ASB2
0342 1908 1864
8343 1900 ASE3
0344 199C 1B6B
8345 190€ A5G4
8346 1910 1867
8347 1912 1872
0348 1914 1B6C
0349 1916 C3
0350 1917 53
0351 1918 184
0352 191A 8581
8353 191C 6484
0354 191E ASE3
8355

835

8357

0358

8359 1920 C903
8368 1922 DSFB
0361 1924 F449
9362 1926 1804
8363 1928 F463
8364 192A 184D

BXA CBRTB, R3 BRANCH TO CLASS PROCESSOR
*
* CLASS 5. MIXED NUMBER OF OPREQ‘S.
*
CL58  BDRR,R2 CLSA
ANDI,R3 H’87°  MASK TO OPCODE
LODA, R@ CLSTB, R2 GET NUMBER OF OPREQ‘S FROM TRBLE.
STRZ R

*

* WRITE OPREQ COUNT AND EXIT TO USER

*

EXIT BCTA, UN EXIT4

*

* RETURN FROM TEST BRANCH. IF BRANCH TARKEN

*

BRCH BSTA,UN RLADR  RESTORE LAST ADDRESS REGISTER

BRCHL LODA,R1 TEMP  GET OPREQ COUNT BACK AFTER TEST BRANCH
CPSL W CLEAR PSL HWC RIT

GOTO USER

*

* ROUTINE TO RDD 2 OPREQ’S IF INDIRECT APPLIES.
*

CIND LODA.RE T3 GET SECOND BYTE OF INSTRUCTION
THI.R® H’88”  TEST INDIRECT EIT '
BCTR.@ PLS2  SET, ADD 2 OPREQ’S
BCTR, UN EXIT  NOT SET, DO NOT ADD

*

* CLASS PROCESSOR TABLE.
*

CBRTB EQU $
*
PLS1 SUBL.R1 1 CLASS 8. 1 OPREQ
BCTR, UN EXIT
PLS2 SUBLLRL 2 CLASS 1 2 OPREQ’S
BCTR, UN EXIT
SUBILRL 3 CLASS 2 3 OPREQ’S + INDIRECT
BCTR, UN CIND
SUBILR1 4 CLASS 2. 4 OPREQ’S + INDIRECT
BCTR, UN CIND
BCTR,E@ PLS2  CLASS4 2 OPREGS IF OPCODE ODD
BCTR, UN PLS1 1 OPREQ IF OPCODE EYEN
STRZ R3 CLASS 5. MIXED NUMBER OF OPREQ’S
L5 RRRR3 SHIFT OPCODE TO LOW BYTE
BCTR. UN CLSB  AND LOOK UP IN TRBLE
ADDIRL 1 CLASS 6. 2 OPREQS + IND IF BRAMCH TRKEN
IORI. RB H'84  CONVERT TO CLASS 7.
SUBL.RL 3 CLASS 7. 2 OPRE@’S + IND IF BRANCH TRKEN
*
* CLASS 6 AND 7.

* ADD 2 OPREQ’S IF INDIRECT AND BRANCH IS TAKEN.
*

STRR.RL *BRCHi+1 SAYE PRESENT NUMBER OF OPREQ’S IN TEMP

KRTE, R1 OPRACT
THL.R@ H’48’
BCTR.@ CL67B
THLR8 H'@3”
BCTR.@8 CIND

ALSO OUTPUT TO HARDHARE

TEST FOR REGISTER CLASS

IF S0, DO NOT TEST FOR UNCONDITIONAL
IS BRANCH UNCONDITIONAL

IF S0, DO NOT TEST BRAMCH

Cc-8



TWIN RSSEMBLER YER 2.8  INSTRUCTOR 58 PRGM 11/1/78 PRGE 6669

LINE ADDR OBJECT E SOURCE

83635 192C F4E@ CL67B THMI,R@ H’E@"  TEST FOR BDR INST
8366 192F 1882 BCTR,@ CL67C  IF SO, DO NOT REMOYE ‘SUBROUTINE’ BIT
8367 1939 44DF ANDI,R8 H'DF-  REMOYE SUBROUTINE BIT FROM OPCODE.

8368 1932 CCi7CO CL67C STRA,R@ SCTCH  STORE IN TEST ARER
8369 1935 BE7951 MYCODE LODA, R@ BRCD, R2 GET ROM CODE

8378 1938 CE77C8 STRA;R@ SCTCH,R2 STORE IN RAM

8371 193B FR78 BDRR,R2 MYCODE DO UNTILL ALL HAS BEEN MOVED.
8372 *

373 *SAYE LADR

8374 *

8275 193D 6Ci7ER SLAD1 LODA.R® LADR  GET LAST ADDRESS REG
8376 1948 CBAE STRR,R8 *RLADR+L  SAYE IT

8377 1942 @C17ES SLAD2 LODA,R@ LADR+1

8378 1945 C8AE STRR, R *RLADR1+1

8379 1947 @417 LODI.R® {SCTCH GET RDDRESS SCRATCH
0388 1949 C8F2 STRR; R8 *SLADL+1

0381 194B 64(0 LODI,R8 >SCTCH

8382 194D CC9942 STRA; R *SLAD2+1

8382 1958 1BI3 BCTR, UN *EXIT3+1 DO TEST BRANCH
0384 *

8385 *THIS IS CODE FOR TEST BRANCH

8386 *

8387 1951 BRCD EMW $-1

8388 1952 18F1 ACON  BRCH  ADDRESS FOR TEST BRANCH
8389 1954 1F1957 BCTA, UN EXIT2 RETURN IF BRANCH NOT TAKEN
8394 *

8391 1957 2B16 EXIT2 BSTR,UN RLADR  RESTORE LAST ADDRESS REG
8392 1959 @Di7Cs LODA,RL TEMP  GET OPREQ COUNT

8393 195C 75608 CPSL  WC CLEAR WITH CARRY

8394 195E DSFE EXIT4 WRTE,RL OPRGCT SET THE OPREQ COUNTER
8395 1968 28 EORZ FRe CLEAR INTERUPT INHIBIT FLAG
839 1961 CCi7F1 STRA,RA IFLG  SAYE IN INTERUPT INHIBIT FLAG
8397 1964 1F1ES9 EXIT3 BCTA.UN GO

8398 *

8399 * CLASS 5 OPREQ TABLE

3490 *

8481 1967 FF CLSTB DATR  OVHD-1 RETC

84082 1968 FF DATA  OVHD-1 RETE

8402 1969 FD DATA  OVHD-3 REDE

8484 196R FE DATR  OVHD-2 C-P PSH

8405 196B FF DATA  OWHD-1 DAR

8406 196C FE DATR  OVHD-2 TPSH

8407 196D FD DATA  OVHD-3 . HWRTE

0488 196E FE DATA  OVHD-2 THI

8489 x

o418 *RLADR RESTORE LAST ADDRESS REG

8411 *

8412 196F @Ci7ER RLADR LODA,RB SLADR  GET SAVED LADR

8412 1972 C8CA STRR, RO *SLAD1+1

0414 1974 @CA7ER RLADRL LODR, R® SLADR+1

8415 1977 C8CA STRR, R8 »SLAD2+1

8416 1979 17 RETC, UN

8417 x



TWIN ASSEMBLER VER 2.8  INSTRUCTOR 58 PRGM 11/1/78 PAGE @819

LINE ADDR OBJECT E SOURCE

8419
2420

8421

0422

423

8424

2425

8426

0427

8428

8429

8430

8431

8432

9433

9434

8435

8436

8437

8438

8439

8440

8441

2442

84432

p444

8445

P44

8447

8448

8449

8450

8451

9452

9453

8454

§455 197A BC17E8
8456 197D G179
8457 1989 7789
8458 1982 ASGL
8459 1984 A48
0460 1986 447F
8461 1988 7569
8462 1987 ESAF
8463 198C 9C185A
9464 198F ESFF
8465 1991 98FR
8466 1993 (SE6
8467 1995 C9E7
8468 1997 BC17CC
8469 1998 CCI7CD
9478 1990 ECI7CD
B471 1970 1864
0472 192 6781
§473 1904 9BES

%
*

*BREAK POINT AND SINGLE STEP RUN TIME CODE

*

*

*SINGLE STEP

%

*WHEN ENTERED AT SINGLE STEP. SINGLE STEP FLAG 1S CLERRED

*AND DISPLAY IS / RDDR DD’

*

*

*WHEN ENTERED AT BRERK POINT AND BREAK POINT IS SET AND MATCHES
*BREAK POINT REGISTER. THE DISPLAY IS “-ADDR DD’

*

%

*REGISTER USED

X

*R9
*

*SUBROUTINE CALLED
*

*DLSLD PREPARE BINARY DATR FOR DISPLAY
*

*

*RAM MEMORY USED

*

*DISBUF DISPLAY BUFFER

*BPF BREAK POINT FLAG

*BPL BRERK POINT LOCATION

*BPD DATR FOR BREAK POINT LOCATION
*LADR COPY OF LAST ADDDRESS REGISTER

*SSF SINGLE STEPFLAG
*

ok

*
BRKPT LODA.R@ LADR  GET LAST ADDRESS REGISTER
BRK3  LODA,R1 LADR+1
PPSL  CHdC  SET CARRY AND WITH CARRY
SUBLLRL 1 DECREMENT LAST ADDRESS REG
SUBI.Re 0 SO CAN COMPARE TO BRERK POINT REGISTER
ANDL.R® H’7F  MASK OFF UNUSED BIT
CPSL  C+#WC  CLEAR CARRY AND WITH CARRY
BRKZ  COMR, R® *BRKPT2+1 COMPARE WITH BPL
BRK1 BCFA,EQ MON  NO COMPARE
COMR, R1 *BRKPT1+1 COMPARE WITH BPL#1
BCFR.EQ *BRK1+1  NO COMPARE

STRR, R *BRKPT+1 IF COMPARE UP DATE PC
STRR, R *BRK3+L

LODA, R@ BPD IF COMAPRE CLEAR BREAK POINT
STRA, RB *BPL

COMA,R@ *BPL  ERROR CHECK OF DATR WRITTEN
BCTR,EQ BRK®  DATA STORED OK

LODLR3 1 BREAK POINT NOT CLERRED 0K
ZBRR  *ERR



THIN RSSEMBLER VER 2.0

INSTRUCTOR 58 PRGM 11/1/78 PAGE @811

LINE ADDR OBJECT E SOURCE

8474 19A6 E440
8475 19A8 1868
8476 19AA @488
8477 19AC CCL7CF
8478 19AF 1F18B4
8479 1982 B47F
8488 19B4 C8F7
8481 1986 0419
8482 1988 C89A
@483 19BA BC17CD
8484 198D 3B32
8485 198F @C17CE
8486 19C2 3B36
8487 15C4 @C97CD
8488 19C7 1B1A
8489

849

8491

8492 19C9 20
8493 19CA CC17D0
8494 19CD @8DE
8495 19CF 1R61
8496

8497 1901 8417
8498 1903 CC17D1
8499 1906 @C17ES
8560 1909 3B16
8561 19DB @C17E9
8562 19DE 3BiA
8503 19E@ GCOTES
8584 19E3 3883
8585 19€5 1F187A
8586

8567

8568

8509 19E8 BBF4
8518 19ER CCA7D7
8311 19ED CD17D8
8512 19F8 17
51z

8514

8515

8516 15F1 BBF4
8517 19F3 CC17D2
8518 19F6 CD17D3
8519 19F9 17
8528

@524

8522

8523 19FR BBF4
8524 19FC CC17D4
8525 19FF CD17D5
8526 1A82 8417
8527 1864 CC17D6
2528 1A67 17

BRK@  COMI,R@ H’48” HALT INSTRUCTION OPCODE

BCTR, EQ BRKPTS IF HALT DON‘T DO HIDDEN SINGLE STEP
SET FLAG FOR HIDDEN SINGLE STEP

LODI. R® H‘88”
BRKPT3 STRA,R@ BFF SET FLAG IN BREAK POINT
BCTA, UN SSTEP  EXECUTE ONE USER INSTRUCTION
BRKPT9 LODI.R® 127 SET BREAK POINT FLAG
STRR, R *BRKPT3+1

LODI.R® H’13”  DASH SYMBOL FOR BREAK POINT

STRR.R@ +BRKPT8+1 SET THE DASH SYMBOL IN DISBUF

BRKPTZ LODA, R® BPL GET BREAK POINT ADDRESS
BSTR, UN BRKPT? SET THE DISPLAY

BRKPT1 LODA. R® BPL+L
BSTR, UN BRKPT6
LODA.R@ *BPL  GET INSTRUCTION OPCODE

BCTR. UN BRKPTS
*

*ENTRY POINT FOR SINGLE STEP
*

SGLSTP EORZ  Re GETR 8
STRA. R@ SSF CLEAR SINGLE STEP FLAG
LODR, R@ *BRKPT3+1 CHECK BRERK POINT FLAG
BCTR, NG BRKPT9 DID A HIDDEN SINGLE STEP

* DISPLAY THE BREAK POINT

SGLSTS LODI.R@ H’17°  BLANK SYMBOL
BRKPT8 STRA,R@ DISBUF SET DISPLRY BUFFER
LODA,R@ LADR  GET ADDRESS

BSTR, UN BRKPT? SET THE DISPLAY
LODAR, RB LADR+1

BSTR, UN BRKPT6 SET THE DISPLAY
LODA, R *«LADR  GET INSTRUCTION DATA

BRKPTS BSTR, UN BRKPTI SET UP DISPLAY
BCTA, UN MON4 GOTO MONITOR

x

*SET UP DISBUF 647

*

BRKFTI ZBSR  *DISLSD CONYERT TO BIN FOR DISPLAY
STRA, R@ DISBUF+6
STRA. R1 DISBUF+7
RETC, UN

x

*SET UP DISBUF 142

*

BRKPT? ZBSR  #DISLSD CONVERT BIN T0 DISPLAY
STRA, R@ DISBUF+1
STRA: RL DISBUF+2
RETC, UN

*

*SETUP DISBUF 384

*

BRKPT6 ZBSR  »DISLSD CONVERT BIN TO DISPLAY
STRA. R@ DISBUF+3 STORE DATA
STRA, RL DISBUF+4
LODI.R@ H/17°  BLANK SYMBOL
STRA, R8 DISBUF+5
RETC, N



THIN RSSEMBLER YER 2.9

INSTRUCTOR 58 PRGM 11/1/78 PAGE @812

LINE ADDR OBJECT E SOURCE

8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8548
8541
8542
8543
8544
8545
8546
8547
8548
0549
8550
8551

8553

8558

8559

8568

8561

8562

8562

8564 1R68 8482
8565 1R6A 1862
8566

8567

@568

8569 1ReC 8461
8578 1RGE CBAR4
8571 1R18 3F1BA4
8572 1R13 E687
8573 1R15 9C187D
8574 1A18 SBEE
8575 1A1A C88D
8576 1R1C C981
8577 1RiE GE17DD
8578 1A21 @717
8579 1A23 CF1708
8580 1A26 1BE5S
8581

8582

8583

8584 1A28 BCA7DE

*

x

*DISPLAY AND ALTER MEMORY ROUTINE
*PATCH MEMORY ROUTINE

*

*

*REGISTERS USED

*

*R@ SCRATCH

*R1 SCRATCH

*R2 SCRATCH

*R3 SCRATCH

*

*SUBROUTINES CALLED

*

*GAD GET ADDRESS PARAMETER
*GNP GET NUMBER PARAMETER
*ROT ROTATE R@ 1 NIBBLE LEFT

*BRKPT4 SETUP DISPLRY 6&7
*BRKPT6 SETUP DISPLAY 3&4
*BRKPT7 SETUP DISPLAY 182
*

*RAM MEMORY USED

*
«MEM INDIRECT ADDRESS MEMORY POINTER
*ALTF ALTER FLAG = 1 FOR DISPLAY AND ALTER

* 3 OR 5 FOR PATCH
x

¥

*

*ENTRY POINT FOR PATCH COMMAND

*

PTCH LODI,Re 3
BCTR, UN ALTERS

SET ALTER FLAG TO PATCH

x

*ENTRY POINT FOR DISPLAY AND ALTER COMMAND

3

ALTER LODI.RG 1 SET ALTER FLAG TO ALTER

RLTERS STRR.R8 +ALTER1+1 STORE IN RLTF
BSTA, UN GRD DISPLAY AD= AND WAIT TILL DIGITS ENTERED
COMI,R2 H’87°  ENTR/NXT?
BCFA,EQ MON2  NEM FUNCTION ABORT ALTER COMMAND

BRNR, R3 ALTER4 NO ADDRESS ENTERED CONTINUE FROM LAST LOCRTION

STRR,R8 *ALTER4+1 MEM+1

STRR, R1 #AL1+1
A4 LODA,R2 MEM

LODL, R3 H'17” BLANK

STRA, R3 DISBUF+7? CLERR DISPLAY

BCTR, UN RLTER2 SET UP DISPLAY

SRVE RDDRESS DATA

GET DATA

%*

*NO ADDRESS CONTINUE FROM LAST ADDRESS
%*

ALTER4 LODA, R® MEM+L  GET ADDRESS

C-12



TWIN ASSEMBLER VER 2.8

INSTRUCTOR 58 PRGM 11/1/78 PAGE @43

LINE ADDR OBJECT E SOURCE

8585 1RZ2B BAF2
8586

8587

8588

8589 1R2D 3B4B
8590 1A2F 82
8591 1A38 3F19F1
8592

8592

8594 1A32 OCL7EF
8595 1A36 E401
8596 1A38 1867
8597 1R3A @417
8598 1A3C CC17D7
8599 1A3F 1B
6668

6681 1A41 6CS7DD
8682 1A44 BBEA
8603 1R46 BBEC
8684 1R48 BBFC
8685 1A4A SBBC
8606 1R4C CCI7DD
8687 1R4F ECS7DD
0688 1R52 1804
8609 1A54 8703
8610 1AS6 9BES
8611

8612

6613

8614 1A5E B8DA
8615 1ASA E461
8616 1ASC 9887
8617 1RSE E687
8618 1R6@ 9C187D
8619 1A63 1BOB
8620

8621

8622

8623 1A6S E6OF
8624 1R67 19F8
8625 1A69 8485
8626 1R6B CBCY
8627 1R6D CE17D8
8628

8629

8638

8631 1A78 3F1CS5
8632 1A73 1F1A2D
8633

8634

B633

8636 1R76 C1
8637 1A77 448
8638 1R79 450F
0639 1A7B BBF6
8648 1A7D 17

LODR, R2 *AL1+1 MEM
*

*PDATE THE DISPLAY

*

ALTER2 BSTR, UN BRKPT6 SET UP ADDRESS DISPLAY
LopZ  R2 GET MSD

BSTA, UN BRKPT? SET UP DISPLAY
*

*
ALTERL LODA,R® ALTF  CHECK ALTER FLAG
COMI,RB 1 PATCH COMMAND
BCTR, E@ ALTER8 NOT PATCH
LODI,R8 H’17’ BLANK CHAR
STRA, R® DISBUF+6
BCTR, UN ALTERS PATCH COMMAND
*
ALTERS LODA,R@ *MEM  GET THE DATR
ZBSR *BRKPT4 SET UP DATR VALUE DISPLAY
ALTERY LODR,RB *ALTER1+1  SET FLAG TO SINGLE BYTE DATA

ZBSR #GNPA  DISPLAY BUFFER AND WAIT FOR NEW ENTRY
BRNR,R3 ALTERZ  NO DATA

STRA,RB #MEM  CHANGE DATA IN LOCATION

COMA, RB *MEM  CHECK DATA STORED OK

BCTR, E@ ALTER3 DATA STORED OK
LODLR3 3 ALTER OR PATCH WRITE ERROR
ZBRR  *ERR  GOTO ERROR

*

*EXIT FROM COMMAND

*

ALTER3 LODR,R® *ALTERi+1  EXIT FROM ALTER OR PATCH
COMI,R® 1 IS IT PATCH
BCFR,EQ ALTERE IF VES TAKE THIS BRANCH
COMI,R2 H’87/ IS IT ALTER NEXT KEY FUNCTION?

A2  BCFA.EQ MON2 GO TO MONITOR NEW COMMAND
BCTR. UN ALTER? GO UPDATE THE DISPLAY

3

*EXIT FROM PATCH

*

ALTERG COMI,R2 H’@F  WAS LAST KEY FUNCTION KEY
BCTR, GT *AL2+1 MON2  FUNCTION KEY WAS LAST GO TO MONITOR

LODI.RB 5 RETURN ON SECOND DIGIT FLAG
STRR, R@ *ALTER1+L SAVE IN ALTF
STRA, R2 DISBUF+7 SET DISPLAY

*

*INCREMENT INDIRECT ADDRESS

*

ALTER? BSTA, UN INK
BCTA, UN ALTER2

INCREMENT THE ADDRESS

*

*PREPARE BIN DATA FOR DISPLAY

*

DISLSI STRZ R4
ANDI. R8 H'F@’
ANDL R1 H'@BF¢
ZBSR  *ROT
RETC, UN

SAYE NUMBER IN R@
MASK FOR MSD
MASK FOR LSD
ROTATE A NIBBLE



TWIN ASSEMBLER VER 2.0

INSTRUCTOR 58 PRGM 11/4/78 PAGE 8814

LINE RDDR OBJECT E SOURCE

0642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8635
8656
8657
8658
8659
8660
8661
8662
8663

8682 1A7TE @51F
8683 1A88 B6R4
8684 1AB2 BBFE
8685 1A84 20
8686 1R85 BBEC
8687

8688 1A87 F480
8689 1A89 1882
8690 1ASB E409

8691 1R8D 1E1AC2

8692 1A99 E46A

8693 1A92 1C1F32

8694 1A95 E468C
8695 1A97 18687
8696 1R99 E4eF

*

*

*DISPLAY AND ALTER REGISTERS COMMAND

*

*THE DISPLAY AND ALTER REGISTERS COMMAND ALLOWS
*THE USER TO EXAMINE AND ALTER R@,R1i.R2.R3.R1‘,R2‘,R3‘,PSU, PSL, FC
*

*THIS COMMAND ALSO PROVIDES ENTRY POINT TO ARLTERNATE FUNCTIONS
*REG 9 NOT DEFINED

*REG A ADJUST CASSETTE COMMAND

*REG B NOT DEFINED

*REG D NOT DEFINED

*REG E NOT DEFINED

*REG F ENTER THE FRST PATCH MODE

*

*REGISTERS USED

*

*R8 SCRATCH

*RL SCRATCH

*R2 SCRATCH

*R3 SCRATCH

%

*SUBROUTINES CALLED

*

«M0Y  MOVE DARTA TO DISBUF

*GNP  GET NUMERIC PARAMETERS

*ROT  ROTATE A NIBBLE

*GNPA  DISPLAY AND GET NUMERIC PARAMETERS
*BRKPT4 SET DISPLAY 647

*SCBP2 SET DISPLAY 445

*

*RAM MEMORY USED

*

*D]SBUF DISPLAY BUFFER

HREG USER REGISTERS

*LADR LAST RDDRESS REGISTER PC COUNTER
*xT2 TEMP REGISTER

*

REG  LODI.R1 (REG-1 GET ADDRESS OF R= DISPLAY
LODI, R2 JRE@-1
ZBSR MOV MOYE DRTA TO DISBUF
EORZ R8 SET FLAG TO RETURN RFTER KEY PRESSED
ZBSR  *DISPLY

THI,R@ H'88” SEE IF FUNCTION

BCTR, EQ *REG14+1 MON2  GOTO MONITOR

COMI,R8 9 CHECK THE COMMAND

BCTA,LT REG2  DISPLAY AND ALTER REGISTERS R@ THRU PSL
COMI R8 H’8A” IS IT ADJUST CASSETTE COMMAND

BCTA,EQ TCAS  TEST CASSETTE

COMI,R@ H’6C’ IS IT DISPLAY AND ALTER PC

BCTR.EQ REGZ  DISPLAY AND ALTER PC

COMI, R H’@F/ IS IT THE PATCH COMMAND



THIN ASSEMBLER YER 2.0

LINE ADDR OBJECT E SOURCE

B697 179 1C1A8
0698 1A% 1BSE
8699

8700

a7et

9762 1AAD B51F
8783 1AR2 PGAC
@784 1AR4 BBFE
0785 1AAG BBGE
8706 1ARS BBEA
@787 1AAR BC17EQ
8768 1AAD 3F108A
8789 1ABO 20
8719 1AB1 BBFC
8711 1RB3 5885
8712 1RBS CC17E9
8713 1AB8 COF1
8714 1ABA E687
8715 1RBC 9C187D
0716 1ABF 1F1ATE
o717

o718

8719

8720 1AC2 CCA7E6
8721 1ACS C3
8722 1AC6 8510
8722 1AC8 E707
8724 1ACA 1AGA
8725 1ACC 1984
8726 1ACE G412
8727 1ADO 1886
0728

8729 1AD2 B411
8730 1AD4 1862
o731

B732 1AD6 @513
8733 1ADS CDA7D3
8734 1ADB CC17D4
8735 1ADE BF77F2
8736 1RE1 BBEA
8737 1REZ 0401
8738 1RES BBFC
8739 1RE7 5B0C
0749 1AE9 PBDS
@741 1RER CF77F2
@742 1AEE E708
A743 1AF 9803
0744 1AF2 CCL7FC
8745 1AF5 E687
8746 1AF7 98C4
#747 1AF9 83
8748 1AFA D8OD
8749 1AFC E488
8750 1RFE 9DIAC2
8751 1801 20
8752 1862 1BFB

*

INSTRUCTOR 58 PRGM 11/1/78

PRGE 8815

DO THE PATCH COMMAND
NOT DEFINED TRY AGARIN

BCTA, EQ PTCH
BCTR, UN REG

«DISPLAY AND ALTER PROGRAM COUNTER

X
REG3

REG11

REG4

REGS
REG14

*

*
REG2

REG10

REGB
REG12
REGI

REG6

REG?

REG43

LODI,R1 (PCEG-1 GET ADDRESS OF PC EQUALS DISPLAY
LODI, R2 >PCEQ-1

ZBSR  #MOY  MOVE DATA TO DISBUF

LODR, R@ *REG4+1 GET CURRENT PC ADDRESS

ZBSR +BRKPT4 SET UP DISPLAY

LODA.R@ LADR  GET MSB OF CURRENT PC

BSTR, UN SCBP2  SET UP DISPLAY

EORZ R@ SET FLAG TO DOUBLE BYTE
ZBSR *GNPfi DISPLAY ADDRESS AND WAIT FOR ENTRY
BRNR,R3 REGY  DON‘T CHANGE DATA

STRA.R@ LADR+1 UP DATE THE PC SAYE LSE
STRR, R1 *REG11+1 SAYE MSB OF PC

COMI,R2 H’87”  ENTR/NXT TERMINATION
BCFA, EQ MON2  IF NOT NEK FUNCTION EXIT
BCTA, UN REG GO ASK FOR NEW REGISTER

*DISPLAY AND ALTER REGISTERS

STRA,RB T2
STRZ R3
LODI,R1 H 18’
COML,R3 7
BCTR, LT REGR
BCTR, GT REG18
LODI. R@ H 127
BCTR. UN REG12

SARYE IT

SRYE R8 TO USE RS INDEX
P CHAR

IS IT PSU

NOT PSU PSL

NOT PSU

CHAR U

GO DISPLAY

LODI, R H 11/
BCTR. UN REG12

CHAR L
GO DISPLAY

LODL, RL H 13/
STRA, R1 DISBUF+2 SET DISPLAY RN=
STRA, RB DISBUF+3 SET UP DISPLRY
LODA, R@ UREG, R3 GET REGISTER CONTENT
ZBSR  +BRKPT4 SET UP DISPLAY

CHAR R

LODI, RO 1 SET FLAG TO SINGLE BYTE

ZBSR *GNPA  DISPLAY REG CONTENT AND WAIT FOR ENTRY
BRNR,R3 REG?  NO DATR TERMINATE

LODR; RZ *REG2+1 GET THE INDEX VALUE

STRA, R@ UREG, RS PUT NEW YALUE IN REGISTER

COMLR3 8 IS IT PSL?

BCFR,EQ REG?  NO CHECK TERMINATION

STRA, R® UREG+1@ SAYE FOR RESTORE OF PSL
COMI,R2 H’87-  CHECK TERMINATION
BCFR, EQ *REG14+1 MON2  NEW FUNCTION

Loz R INCREMENT INDEX YALUE
BIRR,R® $+2 INCREMENT REGISTER COUNT
COMI,Re 8 ROLL OVER?

BCFA. GT REGZ  NO UP DATE DISPLAY

EORZ Re GET R @ GO TO Re
BCTR, UN *REGIZ+1  UPDATE DISPLAY

C-15



TWIN ASSEMBLER VER 28  INSTRUCTOR 58 PRGM 11/1/78 PAGE @816

LINE ADDR OBJECT E SOURCE

8754

8755 *

8756 *

o797 *GET NUMERIC PRRAMETERS

#7598 X .

8759 *

a768 *THIS ROUTINE GETS EITHER 2 OR 4 DIGIT NUMERIC PARAMETERS
o761 *

8762 *INPUT PARAMETERS

8763 *

8764 *R8 CONTARINS INPUT PARAMETER

8765 *

8766 *BIT8 = @ DOUBLE BYTE

8767 *BIT@ = 1 SINGLE BYTE DATR TO BE RETURNED

8768 *BIT1 = @ REQUIRES FUNCTION KEY DEPRESSION TO EXIT
8769 *BITL = 1 WHEN SET WITH BIT@ EXIT 1S AFTER ENTRY OF THIRD DIGIT
arre * OF SINGLE BYTE DATR

ar7i *BIT2 = 1 WHEN SET WITH BIT@ EXIT 1S AFTER SECOND DIGIT
8772 ] OF SINGLE BYTE DATA

773 *

0774 *SINGLE BYTE DATR USES DISPLAY BUFFER 5 THRU 7
@775 *DOUBLE BYTE DATA USES DISPLAY BUFFER 4 THRU 7
6776 *0THER DIGITS OF DISBUF MUST BE INITIALIZED ON ENTRY
777 x

8778 *RETURNS WHEN FUNCTION KEY DEPRESSED

8779 *

8798 *QUTPUT PRRAMETERS

@781 x

@782 *R8 = LSB OF DOUBLE BYTE DATR OR SINGLE BYTE DATA
8783 *R1 = MSB OF DOUBLE BYTE DATR OR 8 FOR SINGLE BYTE DATA
0784 *R2 = FUNCTION KEY PRESSED CODE

8785 *R3 = 8 DATA RETURNED IN RB(LSB), Ri(MEB)

8786 *R3 = NOT @ NO DATR RETURNED RO,R1 = @

a787 *

8788 *REGISTERS USED

@789 x

@798 *R@ SCRATCH

0791 *R1 SCRATCH

0792 *R2 SCRATCH

8793 *R3 SCRATCH

8794 *

0795 *SUBROUTINES CALLED

8796 *

8797 *DISPLY DISPLAY AND RERD KEY BOARD

8798 *CLR BLANK DIGIT DISPLAY

8799 x

6808 *RAM MEMORY USED

9881 *

0892 *T1 SAVE ENTRY FLAG

8583 *«DISPLY 4 THRU 7

8304 *

0885

8806 x

@887 *

6888 , *DISPLAY AD= AND GET DATA



THIN ASSEMBLER VER 2. @

INSTRUCTOR 58 PRGM 11/1/78 PAGE @017

LINE ADDR OBJECT E SOURCE

8809

8810 1B84 @51F
@811 1Be6 B63C
8812 1868 BBFE
0813 1BOR 20
8814 1B6@B 1B2E
8815

8816

8617

6818 1BeD 8517
8819 1BOF F4e1
8820 1B11 1883
8821 1B13 CD17D3
8822 1Bi6 CDI7DE
8822 1B19 CD17D7
8824 1BAC CD17D8
8825 1B1F 17
8826

8827

0828

8829

@838 1B20 C8A6
8831 1B22 8480
8832 1B24 BBEC
8833 1B26 68R0
8634 1B28 F689
@835 1B2A 9809
8836 1B2C E687
8837 1B2E 1882
8838 1B38 3B9B
8839 1B32 1F1B74
8840 1B35 F484
8841 1B37 3A54
8842 1B39 188C
8843

8844

8845

8846 1B3B C88B
8847 1B3D 3B4E
8848 1B3F 8480
8849 1B41 BBEC
8858 1B43 F688
8831 1B45 1820
8852

8853

8854

8855 1B47 GCL7ES
8836 1B4A F483
8857 1B4C 1826
#8858 1B4E F425
8839 1B5A 1822
8860 1B52 F461
8861 1B54 1808
8862 1BS6 @D17D6
8862 1B59 CDA7D5
8864 1BSC 8D17D7

*

GRP  LODI,R1 <RDR-1 GET RDDRESS OF RD= DISPALY
LODI, R2 >ADR-1
ZBSR MOV MOVE DATA TO DISBUF
EORZ RE SET FLAG TO DOUBLE BYTE DATA
BCTR, UN GNPI GET THE RDDRESS DATA

*

*THIS ROUTINE CLEARS DIGIT DISPLAY
*

CLR  LODL,R1 H/17/  BLANK SYMBOL

TML.RR 1 SINGLE BYTE?

BCTR.EQ CLR1  ONE BYTE DATA

STRA, R1 DISBUF+4 INITIRLIZE DISPLAY TO BLANK
CLR1  STRA,R1 DISBUF+5 GET HERE FOR ONE BYTE DATA

STRA: R1 DISBUF+6

STRA, R1 DISBUF+7

RETC, UN

*

*THIS ENTRY POINT ALLOWS DISPLAY OF DATR IN DISPLAY
*BUFFER 4 THRU 7

*

GNPAT STRR,R@ *GNP12+1

GNP13

*

LODI,Re H'g@”
ZBSR

THI.R2 H’88’
BCFR. EQ GNP13
COMI,R2 H'87”
BCTR, EQ $+4
BSTR, UN CLR
BCTR, UN GNP4
T™LRO 4
BSTR: NG CLR
BCTR, UN GNP12

SAYE INPUT FLAG IN T4
TURN ON DECIMAL POINT FOR ENTRY

*DISPLY DISPLAY MESSAGE AND READ KEY BOARD
LODR, RB *GNP12+1

GET INPUT PARAMETER
FUNCTION KEY?
FIRST CHAR IS COMMAND TERMINATE
ENTR/NXT?

CLERAR DISPLAY

PATCH COMMAND RETURN SECOND DIGIT?
CLERR DISPLAY

*THIS ENTRY POINT CLEARS DISPLAY AND WRITS FOR ENTRY

*
GNPI
GNP
GNP2

GNPS

*

STRR. R8 #GNP12+1

BSTR, UN CLR
LODI,R8 H'89”

SAVE INPUT FLAG IN T4
CLERAR DISPLAY
TURN ON DECIMAL POINT FOR ENTRY

ZBSR *DISPLY DISPLAY MESSAGE AND RERD KEY EOARD

THI,R2 H’88’
BCTR, E@ GNP4

FUNCTION KEY PRESSED?
GO TERMINATE

*MOVE DISPLAY 4 DIGIT LEFT

*
GNP12

GM
GN2
GN2

LODA, kB T1

THL.R® H’83”
BCTR. EQ GNP4
THI.R8 H'25”
BCTR, EQ GNP4
TMI.R8 1

BCTR, EQ GNP3

LODA,RL DISBUF+S
STRA, R4 DISBUF+4
LODA R1 DISBUF+6

GET INPUT PARAMETER

THIRD DIGIT #+EXIT ON THIRD ENTRY#SINGLE BYTE

GO TERMINATE

2ND DIGIT#EXIT ON 2ND DIGIT*SINGLE BYTE

G0 TERMINATE
SINGLE BYTE DATA?
ONLY TWO DIGITS
GET DIGIT
SHIFT IT
GET DIGIT

Cc-17



THIN ASSEMBLER YER 2.0

LINE ADDR OBJECT E SOURCE

8865 1BSF C9F6

8866 1B61 8D17D8 GNP3

@867 1B64 C9F7
8668 1B66 CAFA
8869 1B68 B8DE
8870 1B6R 7568
8871 1B6C 8448
8872 1B6E 6420
8873 1B78 C8D6
@874 1B72 1B4B
8875

8876

8877

8878 1B74 28
8879 1B75 C1
8888 1B76 C2
8581 1B77 @8CF
8882 1B79 F461
8883 1B7B 1812

8884 1B7D @C9B3A

8883 1880 E416
8886 1B82 9AE3
8887 1B84 3BIF
6888 1B86 C1
8889 1BR? @8CE
6898 1B8S E410
@891 1BSB 9AB2
8892 1B8D 61
8893 1BSE C1
8834 1BSF @8CC
8895 1B91 E410
8896 1B92 9AAB2
8897 1B95 3BOE
8898 1B97 C2
8899 1B98 88C8
8500 1B9A E416
8361 1B9C 9R84
8982 1BOE 63
#9983 1B9F @789
8984 1BA1 17
8965 1BA2 @77F
9966 1BR4 17
6967

8968

8509

@910 1BAS 7568
8911 1BA7 DO
8912 1BA8 DO
8913 1BAS DO
8914 1BAA DO
8915 1BAB 17

GN4

*

INSTRUCTOR 5@ PRGM 11/1/78

PAGE 8818

STRR, R #GNi+1 SHIFT IT

LODR, R4 DISBUF+7 GET DIGIT

STRR, R1 *GN3+L SHIFT IT

STRR, R2 *GNP3+1 ENTER NEW DIGIT
LODR, RB *GNP12+1 GET INPUT PRRRMETER
CPSL  WC CLERAR WITH CARRY

RDDI.RB H’48”  SET BEEN HERE OMCE FLAG
IORI,R8 H’28”  SET SECOND DIGIT FLAG
STRR, RO *GNP12+1 RESTORE THE FLAG

BCTR. UN GNPZ  GET NEXT ENTRY

*SET UP DATA TO BE RETURNED

*
GNP4

GNPI

%

EORZ R® GETA @

STRZ Rt CLEAR R1 DATR

STRZ B2 CLERR R2

LODR, R® *GNP12+1 GET INPUT PARAMETER
TML.R8 1 CHECK FOR SINGLE BYTE
BCTR.EQ GNP7  IF EQ ONLY 1 DIGIT

LODA, R@ *GN2+1 DISBUF+4 GET MSD OF MSB
COMI,R® H’18°  SEE IF HEX DIGIT

BCFR, LT GNP6  IF NOT SKIP TO NEXT LIGIT
BSTR. UN ROTI ROTATE NIBBLE

STRZ Rt SAVE IN R1

LODR, R@ *GN1+1 DISBUF+5 GET LSD OF MSB
COMI,R@ H’18°  SEE IF HEX DIGIT

BCFR,LT GNP?  IF NOT SKIP TO NEXT DIGIT
IRZ Rt INCLUSIYE OR MSD AND LSD OF MSB
STRZ R SAVE INR1

LODR. R@ *GN3+1 DISBUF+6 GET MSD OF LSB
CoMI,R@ H’48°  SEE IF HEX DIGIT

BCFR,LT GNP8  IF NOT SKIP TD NEXT DIGIT
BSTR. UN ROTI ROTATE THE NIBBLE

STIRZ R3 SAVE IN R3

LODR, R@ #GNP3+1 DISBUF+7
COMI,R® H’1@”  SEE IF HEX DIGIT

GET LSD OF LSB

BCFR.LT GNP  IF NOT RETURN

I0RZ R3 INCLUSIVE OR MSD WITH LSD OF LSB
LODI,R2 @ SET DATA IN R, R1 FLAG

RETC, UN

LODIL, R3 127 NO DATA

RETC, UN

*THIS ROUTINE ROTATES A NIBBLE 4 BITS LEFT

*
ROTI

CPSL  KWC
RRL, RB
RRL, R8
RRL, RO
RRL, R@
RETC, UN

CLEAR WITH CRRRY



TWIN ASSEMBLER VER 2.8 INSTRUCTOR 50 PRGM 11/1/78 PRGE 8019

LINE ADDR OBJECT E SOURCE

8917
@918
8919
@320
8921
8922
8923
8924
8925
8926
e927
8928
8929
8939
@931
8932
8933
8924
8935
9936
8937
8938
8939
8948
8941
8942 1BAC @51F
8943 1BAE 86B4
@944 1BBG BBFE
8945 1BB2 8481
8946 1BB4 BBFA
8947 1BB6 186A
8948 1BBS E687
8949 1BBA 988C
8958 1BBC B47F
8951 1BBE C8A4
8352 1BCO 1B24
0933
8954
8955
8956

8957 1BC2 CCi7E@

8958 1BCS E687

8959 1BC? 9C187D

8968 1BCA 20

8961 1BCB (897
8962 1BCD 75FD
8963 1BCF BBEE
6964 1BD1 E416
8365 1BD2 987A

8966 1BDS 3F1C28

8967 1BD8 E9ES
8968 1BDA 1885
8969 1BDC 28

@97@ 1BDD (885

8971 1BDF 1B8S

*THIS IS THE HEX OBJECT LOADER
*

*THIS ROUTINE REQUESTS A FILE ID AND THEN LOADS 2658 HEX OBJECT MODULES

*INTO MEMORY
x

*REGISTERS USED
*

Ll

*

*SUBROUTINES CALLED

*

*IN CRSSETTE INPUT ROUTINE

*MOY  MOVE DATA TO DISPLAY BUFFER

*GNP  GET NUMERIC PARAMETERS
3

*

*

RCAS  LODI,R1 CFE@-1 GET ADDRESS OF F= DISPLAY
LODI, R2 JFEQ-1
ZBSR MOV MOVE DATA TO DISBUF
LODI.Re 1 SET FLAG FOR SINGLE BYTE
ZBSR GNP GET THE FILE ID
BCTR, EQ RCASY  FILE ID SPECIFIED
COMI,R2 H’87"  ENTR/NXT KEY?
BCFR, EQ *RCAS4+1 GODO NEW FUNCTION

LODI, ke 127 SET FILE ID FLAG TO FILE ID FOUND
STRR. R@ *RCASS+L STORE IN FILE ID FLAG
BCTR, UN LOAD

*

*

#FILE ID SPECIFIED

*

RCASL STRA.RG FID+L  SAYE FILE ID
COMI,R2 H’87'  ENTR/NKT KEV?

RCAS4 BCFA.EQ MON2 GO DO NEW FUNCTION
EORZ R@  SET FILE ID TO ID NOT FOUND
STRR, R *ROASS+1 STORE IN FILE ID FLAG
CPSL  WFD’  CLEAR PSL

ROAS2 ZBSR  *IN  LOOK FOR BEGINNING OF FILE
COMI, RO H’16”  BEGINNING OF FILE CHAR?
BCFR.EQ RCAS2  LOOP TILL FIND BEGIN OF FILE
BSTR.UN BIN  GET THE FILE ID
COMR,R1 *RCAS1+L  CHECK FILE ID FOR MATCH
BCTR,EQ RCASZ  FOUND A MATCH
ERZ R0  GETR®
STRR, RB *RCRSS+1 MO MATCH SAYE IN FID FLAG
BCTR, UN LORD



TWIN ASSEMBLER YER 2.0

LINE ADDR OBJECT E SOURCE

INSTRUCTOR 58 PRGM 11/1/78

PAGE 8020

@972 1BE1 847F RCASZ LODI.Rae 127 SET FLAG TO FILE IS MATCH
8972 1BEX CCA7DF RCASS STRA,R8 FID FILE ID FOUND

0974 1BEE 75FD LORD CPSL  H/FD CLEAR PSL

8975 1BER BBEE 2BSR  *IN GET A CHAR

0976 1BER E42R COMI,R@ R':”  START OF LINE CHAR?

8977 1BEC 9878 BCFR,EQ LORD  LOOP TILL FIND START FO RECORD
@978 1BEE 20 EORZ R8 GETAR @

8979 1BEF CC47E1 STRA: R8 BCC PRESET BCC

@980 1BF2 3B34 BSTR: UN BIN INPUT A BYTE OF DATA

@981 1BF4 CDA7DD STRA, R1 MEM HI RDDR

8982 1BF7 3B2F BSTR, UN BIN INPUT R BYTE OF DATA

9983 1BF9 CD17DE STRA; R4 MEM+1 LO RDDR

8984 1BFC 3B2A BSTR, UN BIN INPUT A BYTE OF DATA

8985 1BFE o1 Lz ®

@986 1BFF 1CiC42 BCTAR,EQ LOADY GO T@ START OF PROGRAM IF BYTE COUNT 8
8987 1082 C2 STRZ R2 SAVE BYTE COUNT

@988 1C03 @8DF LODR, R® *LOAD-2 GET FILE ID FLAG

8989 10085 185F BCTR,EQ LORD  FILE ID NOT FOUND SKIF TO END OF FILE
899¢ 1087 2BiF BSTR, UN BIN INPUT A BYTE OF DATR

8991 1089 1864 BCTR,EQ BLOR  BCC OK READ THE RECORD
8992 1CeB 8784 BLOAL LODI.RZ 4 BCC ERROR

@992 1CeD 9BES ZBRR  #ERR  GOTO ERROR

8994 1C6F 3817 BLOA  BSTR,UN BIN INPUT R BYTE OF DATA

8995 1C11 CDI7DD STRA; R1 *MEM STORE DATA IN MEMORY

@996 1C14 EDI7DD COMA,RL *MEM DO THE ERROR CHECK

8997 1017 1804 BCTR,EQ BLOA2  DATA STORED 0K

8998 1C19 aves LODLRZ S READ CASSETTE MEMORY WRITE ERRCR
8999 1C1B 9BES ZBRR  *ERR  GOTO ERROR

1600 1C1D 3B36 BLOA2 BSTR, UN INK INCREMENT POINTER MEM

1601 1CiF FB6E BORR, RX BLOA LOOP TILL DONE

1682 1C21 3885 BSTR, UN BIN INPUT A BYTE OF DATA

1083 1C23 9866 BCFR, EQ BLOAL BCC ERROR

1684 1C25 1F1BE6 BCTA, UN LORD

1605 *

1086 * INPUT A PAIR OF HEX RSCII CHAR

1067 *CONVERT TO BINARY

1608 «QUTPUT IS INRL

1009 *CALCULATE BCC ON DATA

1610 ¥

1641 1C28 BBEE BIN  ZBSR  *IN INPUT R CHAR

1612 1C2R 75089 (PSL  CHIC  CLEAR CRRRY AND WITH CARRY
1813 1C2C 3B36 BINL BSTR.UN ARHOZ  LOOK UP YALUE

1614 1C2E @2 Lobz Rz PUT YALUE IN Re

1645 1C2F BBFE ZBSR  *ROT  ROTATE YALUE

1616 1C31 C1 STRZ R SAYE YALUE IN R1

1847 1C32 BBEE ZBR  *IN GET R CHAR

10818 1C34 7589 CPSL  C#{C  CLEAR CARRY AND HITH CARRY
1019 1C36 3B2C BSTR,UN AHOZ  LOOK UP YALUE

1028 1C38 81 bz ™ GET SAVED YALUE

1021 1C29 62 I0RZ R2 MAKE THE BINARY BYTE

1622 *

1823 *CALCULATE BCC

1024 *

1023 1C3A C1 (BCC STRZ K SAVE VALUE

1626 1038 2C47EL EORA; R@ BCC XOR WITH CURRENT BCC

1027 1C3E D@ RRL, R@ ROTATE LEFT

C-20



THIN ASSEMBLER YER 2.8

INSTRUCTOR 58 PRGM 11/1/78 PHGE @621

LINE AODR OBJECT E SOURCE

1828 1C3F COFB
1829 1C41 17
10830

1831

1832

1833

1634 1C42 @C17DF
1835 1C45 1C1BCF
1836 1C48 @88F
1837 1C4A CC17ES
1838 1C4D @887
1039 1C4F CCL7ES
1048 1C52 1F1874
1641

1642

1842

1844 1C35 BC17DE
1845 1C58 6EA7DD
1846 1C5B DBE2
1847 1CSD DRGA
1848 1CSF C8FS
1049 1C61 CAF6
1856 1C63 17
1851

1852

1853

1854 1C64 B6FF
1835 1Ce6 EE3FCS
1856 1C69 14
1857 1C6A E618
1858 1C6C 9878
1059 1Ce6E 0706
1868 1C70 SBES
1061

1662

1863

1664 1C72 648D
1665 1C74 BBFe
1866 1C76 B4eA
1867 1C78 BBFO
1868 1C7A 17
1869

1078

1971

1672 1C7B 7988
1873 1C7D BBF4
1874 1C7F C2
1675 1088 BE7FCS
1076 1C63 BBFE
1077 1085 @D7FCS
1878 1C88 BBFO
1879 1C8A 17

STRR,R8 *CBCC+2 UPDATE THE BCC
RETC. UN

*

*

*FINISHED READING FILE

X

LOADY LODA,R@ FID CHECK FILE ID FLAG FOR FILE ID FOUND
BCTA, EQ RCAS2Z  NO LOOK FOR START OF NEXT FILE
LODR, K@ *INK2+1 GET VALUE FROM MEM PLACE START ADDRESS IN PC
STRA, R@ LADR
LODR, k@ *INK+1 GET VALUE FROM MEM+1
STRA, k@ LADR+L

BCTA: UN MON3 GO TO THE MONITOR

*

*INCREMENT RDDRESS MEM
*

INK  LODA,R@ MEM+1  GET ADDRESS
INK2  LODA, R2 MEM

BIRR,R8 INKA  INCREMENT IT
BIRR,R2 INK1
INKL  STRR,R@ *INK+1 SAVE IN MEM+L

STRR,R2 *INK2+1 SAVE IN MEM
RETC, WN

%

+L0OK UP ASCII HEX TO CONVERT TO BINARY

*

AHO3 LODLR2 255  PRESET INDEX
COMA,RO ASCILR2,+  CHECK THE VALUE
RETC, EQ RETURN IF EQUAL
COMI,R2 H’48”  CHECK FOR MAX COUNT
BCFR.EQ AHOZ+2 LOOP
LODLR3 6 CHAR NOT ASCIT HEX
ZBRR  #ERR  GOTO ERROR

¥

*CARRAGE RETURN AND LINE FEED

3

CRLFF LODI.R@ 13 CARRAGE RETURN
ZBSR +QUT PRINT
LODI, k2 18 LINE FEED
ZBSR +QUT PRINT
RETC, UN

*

*CONVERT BINARY TO ASCII HEX AND PRINT
*

HOUTT CPSL WL
ZBSR  +DISLSD CONVERT BIN TO NIBBLE

STRZ  R2 SAYE IN R2

LODA. R ASCII, R2 TENS DIGIT
ZBSR  »QUT  PRINT TENS DIGIT
LODA, R® ASCII, RL GET UNITS DIGIT
ZBSR *QUT PRINT UNITS DIGIT
RETC. UN



TWIN RSSEMBLER YER 2.8 INSTRUCTOR 58 PRGM 11/1/78 PRGE 6022

LINE RDDR  OBJECT E SOURCE

1681

ieg2 *

1882 *

1684 +HRITE CASSETTE COMMAND

1883 *

1886 *THIS ROUTINE WRITES 2658 HEX FORMAT TO CASSETTE TAPE
1887 *

1088 *REGISTERS USED

1089 *

1630 *R@ SCRATCH

1891 *R1 SCRATCH

1092 *R2 SCRATCH

1692 *R3 SCRATCH

1894 *

1895 *SUBROUTINES CALLED

1696 *

1897 «0UT KRITE CHAR TO TAPE

1098 *HOUT CONVERT BINARY TO ASCIT HEX AND WRITE TO TAPE
1899 *INK INCREMENT POINTER MEM

1160 *

1164 *RAM USED

1182 *

ez *BCC  BLOCK CHECK CHAR

1184 *MEM  POINTER

1165 *«BAD  PROGRAM START ARDDRESS

1186 *SAD  DUMF STOP ADDRESS

11@v 1D FILE ID FLAG AND STORAGE

11e8 * '

11e9 *THIS ROUTINE PUNCHES A HEX FORMAT TAPE
1118 *

1111 *

1112 *  LEADER16ID:ADDRCTBCARDDCCRR. . ... ... BC
1112 *

1114 ook ok
1115 *

1116 *

1117 1CSB 20 KCRS4 EORZ  Re GET R @

1118 1C8C BBFA ZBSR GNP GET NUMBER

1119 1C8E E687 COMI,R2 H’87"  ENTR/NKT KEY

1126 1C% 17 RETC, UN

1121 ¥

1122 *

1123 1091 851F WCAS  LODI,R1 <LADER-1 GET RDDRESS OF LAD= DISPLAY
1124 1C92 B6BC LODI. R2 >LADEG-1

1125 1C95 BBFE ZBSR  #MOY  MOVE TO DISPLAY BUFFER
1126 1C97 3872 BSTR, UN MCAS4  GET ADDRESS DATA
1127 1C99 988E BCFR.EQ »WCASE+1 MONZ  IF NOT EXIT
1128 1C98 CD17DD STRA, R1 MEM SRYE START ADDRESS
1123 1C9E CC17DE STRA, RO MEM+L

1130 1CA1 @412 LODI,F@ H’12”  CHANGE DISFLAY

1131 1CAZ CC17D1 STRA, R@ DISBUF DISPLAY ‘URD=  *
1132 1CA6 3B63 BSTR. UN WCAS4  GET ADDRESS DATA

1133 1CA8 SC187D WCAS6 BCFA,EQ MON2  NOT ENTR/NXT MUST BE NEW COMMAND
1134 *
1135 *CHECK FOR START ADDRESS GT THAN STOP



TWIN RSSEMBLER VER 2.9

LINE RDDR OBJECT E SOURCE

1136

1137 1CARE ED17DD
1138 1CAE 1866
1129 1CB8 1989
1140 1CB2 8787
1141 1CB4 9BES
1142 1CB6 EC170E
1143 1CB9 1R77
1144

1145 1CBB D882
1146 1CBD D388
1147 1CBF CD17CS
1148 1CC2 CC17C9
1149 1005 8405
115@ 10C7 CC17Dp1
1151 1CCR 2F1CEE
1152 1CCD ICICA9
1152 1CD@ CD17CA
1154 1CD2 CC17CB
1155 1CD6 @51F
1156 1CD3 @6R4
1157 1CDR BBFE
1158 1COC m481
1159 1CDE BBFA
116@ 1CER E68?
1161 1CE2 93C5
1162 1CE4 C894
1163 1CE6 B60A
1164 1CES 8719
1165 1CEA 20
1166 1CEB BBFA
1167 1CED FE7B
1168 1CFF 12
1169 1CF8 2440
1179 1CF2 92
1171 1CF2 FAT2
1172 1CF5 9416
1173 1CF7 BBFA
1174 1CF9 AC17ER
1175 1CFC BBF2
1176 1CFE BBFS
1177 1089 842A
1178 1082 BBF@
1173 1004 20
118@ 1085 C8AZ
1181 1087 @C17C8
1182 1D0A 7789
1182 1D8C BF17CO
1184 1DBF ABAC
1185 1011 RBAS
1186 1013 7588
1187 1015 1EACB2
1188

1189

1198 1018 5818
1191 1D1R 5B1S

*

KCRS8

HCAS?

KCRS9

WCAS3

PUNLD

WCASS

PUNZ

PUN

INSTRUCTOR 58 PRGM 11/1/78

PAGE @823

COMR, R1 MEM
BCTR, EQ WCRSY
BCTR, GT WCASS
LODL.R3 7
ZBRR  *ERR
COMA, k9 MEMHL
BCTR, LT WCAS8

CHECK HI BYTE

SET THE ERROR NUMBER
GOTO ERROR
CHECK LO BYTE

BIRR, R® WCASA
BIRR, R1 WCASA
STRA,RL ERD

STRA, k8 EAD+L
LODL RB H'85”

INCREMENT STOP ADDRESS
SO DUMP IS INCLUSIVE
SAYE END ADDRESS

CHANGE DISPLAY

STRA,R@ DISBUF DISPLAY “SAD=  /

BSTA, UN WCAS4  GET PROGRAM START ADDRESS
BCFA, EQ *WCAS6+1 MON2  GOTO MONITOR NEW FUNCTION
STRA, R1 BAD SAYE START ADDRESS

STRA, RA BAD+1

LODL,RL CFEQ-1 GET ADDRESS OF F= DISPLAY
LODI. F2 >FEQ-1

ZBSR +i0V MOVE DATA TO DISBUF

LODI,RE 1 SET FLAG TO SINGLE BYTE

ZBSR +GNP GET THE FILE ID

COMI,R2 H'87/  ENTR/NXT KEY

BCFR,EQ +WCASE+L MONZ  EXIT NEW COMMAND
STRR, R@ *WCASS+L  SAYE FILE ID

LODI, R2 10 SET THE DELAY

LODI,R3 25
EORZ ke
ZBSR  *OUT
BDRR, R3 PUNL8+2
SPsu GET FLAG

EORI,R@ H’4@8’  COMPLEMENT IT

LPSu RESTORE IT

BDRR.R2 PUN1@  DECRERSE THE COUNT

LODI. k@ H"16 START OF FILE CHAR

ZBSR *0UT PRINT

LODA:R® FID+1  GET FILE ID

ZBSR *HOUT CONYERT TO ASCII HEX AND PRINT

ZBSR  +CRLF  QUTPUT CARRAGE RETURN AND LINE FEED

LODI.R® A":©  START OF BLOCK CHAR

ZBSR  +UT  PRINT

EORZ RO GETAR®

STRR, RB +PUNZ+1 PRESET BCC

LODA, R® ERD CALCULRTE NO OF BYTES TO OUTPUT

PPSL  HWC+L  SET CARRY AND WITH CARRY

LODA.R2 ERD+1  GET END ADDRESS

SUBR.R3 *BDUM1+1 MEM+1 SUBTRACT START RDDRESS FROM STOP RDDRESS
SUBR. R@ +BDUM+1 MEM

CPSL WC CLEAR WITH CARRY

BCTA: NG WCAS8  START > STOP

GETR B
OUTPUT R LEADER

BRNR.R® ADUM  START ADDRESS GT THAN 256 AWAY FROM STOP
BRNR.E2 GDUM  START ADDRESS LT 256 AKAY FROM STOP

C-23



THIN ASSEMBLER YER 2.0

LINE ADDR OBJECT E SOURCE

1192 1D1C @C17CA
1193 1D4F 3B39
1194 1021 @C17CR
1195 1D24 3B34
1196 1026 20
1197 1D27 3831
1198 1029 BC17EL
1199 1D2C 3B2C
12688 1D2E 1F1874
1201

1282

1283 1031 E7LE
1264 1D33 1RA2
1283 1D35 671E
1286 1DZ7 6C170D
1207 1D3A 3BIE
1268 1D3C BC17DE
1269 1D3F 3B19
1216 1041 @3
1211 1D42 2B16
1212 1D44 BBE4
1213 1D46 3B12
1214 1D48 8C970D
1215 1D4B 286D
1216 1D4D 3F1C35
1217 1D5@ FB76
1218 1052 AC17EL
1219 1055 3863
1228 1D57 1F1CFE
1224

1222 1D3A 3F1C2A
1223 1050 &1
1224 1D5E BBF2
1225 168 17

* %

RDUM

BOUML

EDUM

INSTRUCTOR 58 PRGM 11/1/78

PAGE 8624

LODA, R@ BAD THIS IS END OF FILE BLOCK

BSTR, UN EDUM SO OUTPUT STRRT RDDRESS OF PROGRAM
LODA. k@ BAD+

BSTR, UN EDUM  OUTPUT R BYTE RS 2 ASCIT HEX CHARS

EORZ  RE END OF FILE BLOCK

BSTR, UN EDUM OUTPUT BYTE COUNT

LODA, R8 BCC GET BCC

BSTR, UN EDUM OUTPUT BCC

BCTA, UN MON3 GOTO MONITOR

COMI,R3 H’4E” IS START LT 30 AWAY FROM STOP
BCTR,LT BDUM  OUTPUT LAST BYTES

LODI,R2 H’4E” NO OF BYTES THIS RECORD IS 28
LODA, R@ MEM OUT ADDR HI

BSTR.UN EDUM  OUTPUT BYTE AS 2 ASCIT HEX CHARS
LODA, R® MEM+1  OUT ADDR LO

BSTR, UN EDUM  OUTPUT BYTE RS 2 ASCII HEX CHARS
Loz R3 OUT BYTE COUNT

BSTR, UN EDUM  QUTPUT BYTE AS 2 ASCII HEX CHARS
LODR, R8 *PUN3+1 OUT BCC FOR RDDR AND BYTE COUNT
BSTR.UN EDUM  OUTPUT BYTE AS 2 ASCII HEX CHARS
LODA,RG +MEM  OUTPUT DATA FROM MEM

BSTR, UN EDUM  OUTPUT BYTE RS 2 RSCII HEX CHARS
BSTA, UN INK INCREMEMT POINTER MEM

BORR,R3 DDUM  LOOP TILL DONE

LODA, Ré BCC GET BCC

BSTR,UN EDUM  GUTPUT BCC FOR DATA

BCTA: UN PUN2

BSTA, UN CBCC  CALCULATE BCC

LbZz RL GET YALUE TO QUTPUT

ZBSK  *HOUT  PRINT RS 2 ASCII HEX CHARS
RETC. LN



THIN ASSEMBLER YER 2.8  INSTRUCTOR 54 PRGM 11/1/78 PAGE 8825

LINE ADDR OBJECT E SOURCE

1227

1228

1229

1239

1231

1232

1232

1234

1235

1236

1237

1238

1239

1248

1241

1242

1243

1244

1243

1246

1247

1248

1249

1250

1251

1252

1252

1254

1255 161 @51F
1256 1D62 B6SC
1257 1D65 BBFE
1238 1D67 8CA7CF
1259 1D6A 186R
1268

1261

1262

1263 1D6C BC17CE

1264 1D6F BBEA

1265 1071 @C17CD

1266 1074 3814

1267 1076 20

1262 1D77 BBFC

1269 1079 1818

1278

1271

1272

1273 107B 8828

1274 1D7D 1883
27 1D7F E6fd

1276 1081 9885

1277 1083 28

1278 1D84 CCiVCF

1279 1087 1F1570

1280

1261 102R BBF4

*
*
*SET OR CLEAR BREAK POINT
*
*
*T0 SET BREAK POINT ENTR ADDRESS AND DEPRESS FUNCTION KEY
*T0 CLEAR BREAK PDINT DEPRESS FUNCTION KEY
*
*SUBROUTINES CALLED
*
*MOY MOVE DATA TO DISBUF
*GNPR DISPLAY AND GET ADDRESS DATA
*ROT ROTATE R NIBBLE
*SCBP2 SET DISBUF 445
*BRKPT4 SET DISEUF 647
*DSLSD CONYERT TO BINARY FOR DISPLAY
*
*RAM MEMORY USED
*
*BPF BRERK POINT FLAG
+BPL LOCATION OF BREAK FOINT
*BPD DATR TO BE RESTORED IN BREAK POINT LOCATION
*
%
*
Fokoicketokok ook fokokaok dokok ok kofokokk ookl pokokokoketololopskolokabokgokotsfeolok dotolo kool
SCBP  LODI,RL <BPEQ-1 GET ADDRESS OF BP= DISPALY
LODI, k2 JEPEQ-1
ZBSR WMOY  MOVE DATA TO DISBUF
LODA,R® BPF  BREAK POINT SET?
BUTR.EQ SCBPL  NOT SET GET RDDRESS
*

*BREAK POINT SET SET UP ADDRESS DISPLAY
*
LODA, R@ BPL+L  PREPARE THE ADDRESS
ZBSR  *BRKPT4 SET UP DISPLAY
LODA, R@ BPL GET MSB
BSTR, UN SCBP2  SETUF DISPLAY
SCBPL  EORZ Re SET UP GET NUMBER PARAMETER TC 4 DIGIT
ZBSR #GNFA  GET THE ADDESS IF ANY
ECTR,EQ SCBP4  SET THE BREAK POINT
*
*THIS SECTION CLEARS THE BREAK POINT
*
LODR, B2 *SCBPE+1 CHECK BREAK FOINT FLAG
BCTR. EQ *SCBPT+1 EREAK POINT NOT SET GO TO MONITOR
COMI.R2 H'g81" IS TERMINATION BKP?
BCFR, EQ #SCEFS+L NO LEAYE BREAK POINT SET GO TO MIMITOR
EORZ k@ GET AR ®
SCBPE& STRA, Re BFF CLEAF EREAK POINT FLAG
SCBFS  ECTA. UN MONZ GO TO MONITOR
*
S

CBF2 ZBSE  +DISLSD CONVERT TO EIN FOR DISPLAY



TWIN RESEMBLER YER 2.8 INSTRUCTOR 58 PRGM 11/1/78 PAGE @B2a

LINE ADDR OBJECT E SOURCE

1282 1DEC CDIFLE STRA. R1 DISBUF+3
1232 1D6F CCATDS STRA, R@ DISELF+4

1284 1092 17 RETC. UN

1285 *

1236 #THIS SECTION ZETS THE BREAK POINT

1287 *

1228 1023 CCAVCE SCBP4 CTRA, R BPL+1  SET BREAK POINT ADDRESS

123% 1096 COL7CD STRA,R1 BPL

250 1099 28 EORZ RO CLERR BRERK POQINT FLAG
1291 1DSA C3E3 STRF. R #SCBPE+1 CHECK THE BRERK FOINT CAN BE SET
1292 1D3C BCIFLD LODA.F@ «BPL  GET DATA FROM PREAK POINT LOCATION
1293 {[SF @5Ba LODI.F1 H'E@"  EREAK POINT INSTRUCTION .. WRTC. PR
1294 1DR1 CDSVCD STRR,F1 #BPL  TRY TO SET EREAK POINT
1295 1DR4 EDSFLD COMA,RL *BPL  DID IT SET QK7
1296 1DR7 1204 BCTR, EQ SCEPT  EREAK POINT CAN BE SET

12597 10RS @781 LODI.RZ 1 CANT SET BREAK POINT ERROR

298 1DAB FEEE ZBRR  +ERR  GOTO ERROR

1299 10AD CLA7CD SCBP? STRA.RE #BPL  RESTORE USER DATA

1368 10BO B47F LODI. ke 127 SET THE BREAK PCINT FLAG

1391 1DB2 €801 STRR: R@ *SCBP6+1 SET IT

1362 1DB4 1BD2 BCTR, UN +SCBPS+1  GOTO MONITOR



TWIN ASSEMBLER VER 2. @  INSTRUCTOR 5@ PRGM 11/1/78 PAGE @@z7

LINE ADDR OBJECT E SOURCE

1304 Hokobioblobikokkrb koo oo Rk ok
1385 *

36 *

1387 *MOYE S BYTES OF DATA POINTED TQ IN R4 AND R2 TO DISEUF
1288 *

1289 #
1218 #REGISTERS USED
1311 *
1212 *R@ SCRATCH
1243 *R1 HI ADDRESS BYTE OF DATA ADDRESS-1
1714 *RZ LO ADDRESS BYTE OF DATA ADDRESS-1
1245 #R2 NOT USED
1316 *
1217 *SUBROUTINES CALLED

1218 ¥
1319 *NONE
1320 *
1321 *RAM MEMORY USED
1322 *

322 *T TEMP INDIRECT ADDRESS

1324 *

1325 lokiokkpok ook Rkl okl ook ok
1326 *

1327 1DB& CDATEX MOVI  STRALRL T SET INDIRECT RDLRESS

1225 1DB9 CE17E4 STRA.R2 T+1

1229 1DBC 8608 LODI.R2 8 SET INDEX TO MOVE 8 BYTES

1338 1DBE GEFYEZ MOvi LODA.R@ *T,R2 GET A BYTE

1231 1pC1 CE77DA STRA: k@ DISBUF-1.R2 MOVE TO BUFFER
1332 1DC4 FA7E BDRR: RZ MOV1

1332 1DCk 17 RETC, LN



TWIN ASSEMBLER VER 2.@  INSTRUCTOR 5@ PRGM 11/1/78 PAGE 8828

LINE ADDR OBJECT E SOURCE

1335

1336

1337

1338

1339

1248

1341

1342

1343

1244

1345

1346

1347

1348

1349

1350

1251

1252

1353

1254

1355

1256

1357

1358

1359

1260

1361

1362

1263

1264

1365

1366

1367

1268

1369

1379

1371

1372

1272

1374

1375 1007 0406
1376 1DC9 FB7E
1277 10CR 52
1278 10CC 877D
1379 1DCF €1
1280 1DD@ 4589
1381 1002 447F
1382 1DD4 @C7F6S
1382 1007 61
1384 1008 Féat
1285 1DDA 1A88
1386 1DDC @DA7ED
1387 1DDF 9A03
1368 1DE1 4508
1389 1DE3 61

*

*

*KEY BOARD SCAN AND DISPLAY ROUTINE

*
*THIS ROUTINE WRITTEN BY ALEX GOLDBURGER

*

*

*T0 USE THIS ROUTINE PLACE DATR TO BE DISPLAYED
*IN DISBUF (SEE CODES AT BEGINNING OF PROGRAMY

*

+(N ENTRY R@ CONTAINS A FLAG

*

*RO = @ NORMAL OPERATION

* ON EXIT R@ = KEY PRESSED CODE

RO = 1-127 GO THRU SCAN ONCE AND EXIT

X ON EXIT R@ = KEY PRESSED CODE

*RO = H’88” TURN ON DECIMAL POINT FOR ENTRY MODE
* ON EXIT F@ = KEY PRESSED CODE

*

*SEE KEY PRESSED CODES AT EEGINNING OF PROGRAM
*

*REGISTERS USED IN BANK ON ENTRY
*
*R@  SCRATCH

R4 KEYBOARD FLAGS
#R2  DIGIT SELECT
*R2 DIGIT PDINTER
*

*SUBROUTINES CALLED
*

*NONE

*

*RAM MEMORY USED

¥

*DISBUF DISPLAY PUFFER

*FLG KEY BOARD FLAG
*

Fookekokod fetofokcfokkodcok LERREZ LSRR AR SRR A RS
*
DLOOP LODI.RB & DELAY TO MAKE LOOPS ECUAL
BDRF. R@ $
DLOOPL RRR.R2 ROTATE DIGIT SELECT
LODA, RA DISBUF-1,R3 GET DATA TO BE DISPLAYED
STRZ R SAYE DISPLAY CODE
ANDI. R4 H’8@°  MASK FOR DECIMAL POINT
ANDI.R@ H'7F-  MASK OFF DECIMAL POINT
- LODA, R@ SEGTEL.R# CONVERT TO SEGMENT DATH
I0RZ M SET THE DECIMAL POINT IF NEEDED
THI.R2 H/B1” COL 77
BCTR, NG DLOOPZ  DONT PUT DECIMAL POINT HERE
LODA, R1 KFLGHL GET FLAG
BCFR, NG DLOOPZ IF FLAG NOT NEG NO DECIMAL POINT
ANDI.R1 H’88°  MASK DECIMAL POINT
IRz Rt SET DECIMAL POINT



TWIN RSSEMBLER YER 2.8  INSTRUCTOR 58 PRGM 11/1/78 PHGE @829

LINE ADDR OBJECT E SOURCE

1390 1DE4 a5o8 DLOOPR LODI.RL @ GET A @

1391 1DEA DSF9 -MWRTE.R1 SEG TURN OFF SEGMENTS

1292 1DES DEFA WRTE,RZ DIGIT  ENABLE NEXT DIGIT

1393 1DER D4FS - WRTE, R@ SEG AND DISFLAY IT

1394 1DEC BC17EC LODA,RB KFLG  SEE IF KEY IS DOWN?

1395 1DEF 986 BCFR,EQ DLOOP4 KEY UP DEBOUNCE

1396 1DF1 1B1A BCTR, UN DLOOPS IS KEY DOWN?

1397 *

1398 1DF3 FB32 DLOOF2 BDRR.R3 DLOOP  DECREMENT DIGIT PTR

1399 * TEST IF ONE SCAN IS DONE
1480 * IF ONE SCAN DONE INITIALIZE SCAN
1481 * PARAMETERS AND KEY FLAGS

1482 1DFS @Ci7ED
1483 1DF8 1933

LODA, R@ KFLG+1 CHECK FOR ONE PRSS THEN EXIT MODE
BCTR.GT DISPI  IF ONE PASS EXIT

1484 1DFA 1B23 BCTR,UN DISP4  RESET THE FLAGS
1485 *

1486 *

1487 1DFC 3B28 DLOOP4 BSTR, UN GETKEY GET R KEY

1403 1DFE 9806 BOFR.EG DLP®  KEV IS DOMN RESET DEBOUNCE
14689 1E09 6887 LODR, k8 *DLP1+1 KFLG+2 GET COLNTER YRLUE
1410 1£@2 FOO4 BORR: R DLP1

1411 1E04 1814 BCTR,UN DISPL  SET FLAG TO ACCEPT KEY
1412 1E06 @468 DLP@ LODI.RA H’68”  SET THE DELRY COUNT

1412 1£08 CCA7EE DLP1  5TRA,RB KFLG+2 SAYE DELAY COUNT

1414 1E6B 1Bs6 BCTR, UN DLOOPZ DO THE NEXT SCAN

1415 *

1416 *

1417 1E@D 3B1Y DLOOPS BSTR.UN GETKEY IS A KEY DOWN?

1418 1EGF 1862 BCTR.EQ DLOOP2  NO

1419 1E11 1824 BCTR, UN CODE

1428 *

1424 *ENTRY TO DISPLAY ROUTINE HERE

1422 *

1423 1E1R CCAVED DISPLI 5TRA.R® KFLG+L SAVE INPUT PARAMETER

1424 1E16 8460 DISP2 LODI. K@ H'6@87  KEY WAS DOWN - SET KFLG
1425 * NOT TO RCCEPT KEY NEXT SCAN

1426 1E18 CBEF
1427 1F1A CCi7EC

STRR.R® +DLP1+1 KFLG+2 SET KEY DEBOUNCE DELAY
DISPL STRA,R8 KFLG  SAYE KFLG

1423 1E1D 7509 CPSL  C#dC  CLERR CARRY AND WITH CARRY
1429 1E1F @ves DISP4 LODI,R3Z W02  INITIALIZE DIGIT POINTER
1430 1£21 0681 -LODI,R2 H'@1’  AND DIGIT SELECT

1431 1E23 1F1DCB BCTR. UN DLOOPL GO DISPLAY

1432 *

1423 *GET KEY CODE

1434 *

1435 1E26 S5FE GETKEY REDE.RL KBDIN  RERD KEYBOARD

1436 1E28 450F ANDI,R1 H'@F’  MASK OFF UNUSED BITS
1437 1E2R 256F EORI,RL H’@F”  INVERT THE INPUT

1438 1E2C 17 RETC, UN

1439 *

144a *SINGLE PRSS EXIT

1441 *

1442 1E2D Bdén DISPX LODI.R® 18

1443 1E2F FS7E BDRR, k0 $ DELAY

1444 1E31 D4F9 WRTE, RB SEG TURN OFF SEGMENTS

1445 1E33 9488 LODI.RB H’88”  NO KEY PRESSED CODE

C-29



TWIN ASSEMBLER YER 2. @

LINE RDDR OBJECT E SOURCE

1446 1E35 C2
1447 1E36 17
1445

1449

1450

1451 1E37 28
1452 1E38 D4F9
1453 1E3R A781
1454 1E3C D4FA
1455 1E3E 8684
1456 1E48 51
1457 1E41 E580
1458 1E43 1808
1433 1E45 8404
1460 1E47 FRA77
1461 1E49 @708
1462 1E4B 9BEB
1463 1E4D E7B4
1464 1E4F 1R85
1465 1E51 50
1465 1E52 €488
1467 1EM 4701
1463 1E5€ 83
1469 1E57 C2
1470 1ES8 17

*

INSTRUCTOR 50 PRGM 11/1/78

STRZ  R2
RETC, UN

PAGE 0038

SAYE IN R2

#CONVERT KEY LINE DATR TO KEY CODE

*

CODE

CODEL
CODE4

CODE3

EORZ RO
KRTE.R8 SEG
SUBLLR3 1
WRTE, R@ DIGIT
LODL. R2 4
RRR, R1
COMI,R1 H 88"
BCTR. EQ CODE2
ADDI, B H 84"
BORR. k2 CODE4
LODI.R2 8
ZBRR  *ERR
COMI,R3 H 84’
BCTR, LT CODEX
m}m
IORI, RA H'88”
ANDL, R2 H'@1”
RDDZ  R3
STRZ R2
RETC, UN

GETAR®

TURN OFF SEGMENTS
DECREMENT COLUMN COUNTER
TURN OFF COLUMNS

LOOP COUNT

GET WEIGHT OF KEY LINE
CHECK FOR 1 KEV DOMN

Ra = 8,4.8, OR H'C’

CHECK FOR ONLY 1 KEY
MORE THAN 1 KEY DOWN OR NO KEY DOKN
GOTO ERROR
NUMBER OR FUNCTION KEY?
# KEY
DIVIDE KEYLINE WEIGHT BY 2
FUNCTION KEY DESIGNATOR
RETAIN LSB ONLY
TO GET WHOLE KEYCODE
SAVE KEY CODE IN R2



TWIN RSSEMBLER VER 2.8

LINE ADDR OBJECT E SOURCE

1472

1472

1474

1475

1476

1477

1478

1479

1480

1481

1482

1482

1484

1485

1484

1487

1488

1489

1490

1491

1492

1492

1494

1493

1496

1497

1498

1499

1568

1501

1502

15e3

1584 1ESS 8C17D@
1585 1ESC 9819
1586 1ESE OC17CF
1567 1E61 1814
1508 1E63 BC97Ch
1589 1E66 CCA7CC
1517 1E69 04B9
1541 1E6B CCS7LD
1512 1E6E EC97CD
1543 1E71 1804
1514 1E73 @761
1515 1E70 9BES
1516 1E77

INSTRUCTOR 5@ PRGM 11/1/78

PAGE Baz1

*
*

*
*

+G0TO ROUTINE

*REGISTERS USED

*

*R@ SCRATCH
#R1 SCRATCH
*R2 SCRATCH
*R2 SCRATCH
*R1’ RESTORED
*R2’ RESTORED
*R3‘ RESTORED
*PSU RESTORED
*PSL RESTORED

%

*

*NONE

*

*
*SSF
*BPF
*BPL
*BPD

*SUBROUTINES USED

*RAM MEMORY USED

SINGLE STEF FLAG
BRERK POINT FLAG
BREAK. POINT LOCATION
BREAK POINT DATA

ER AR B2 L2

*

+LADR INDIRECT ADDRESS TO JUMP THRU

*

GO LODA, R@ SSF
BCFR, EG GO
LODA, Ré BPF
BCTR.EQ GO1
LODA. R@ *BPL
STRA. R@ BPD
LODI, ke H'B@’
STRA, R8 *BFL
COMA, R@ +BPL
BCTR.EQ GO
LODLR2 1
ZBRR  *ERR

G01  EQU $

Fhdkokkk koo ey

GET SINGLE STEP FLAG

NQ SINGLE STEP GOTO USER

GET BRERK POINT FLAG

BREAK POINT GO TO USER MO EREAK POINT
GET USER DATA

SRVE USER DATA

WRTC. R@ BREAK POINT INSTRUCTION
SET THE BREAK POINT

CHECK BREAK POINT SET 0K

GOTO USER

ERROR BRERK POINT NOT SET 0K
GOTO ERROR



THIN ASSEMBLER VER 2.8  INSTRUCTOR 58 PRGM 11/1/78 PRGE @832

LINE ADDR OBJECT E SOURCE

1518 * Fiklolilokiooiioiiokloblob ool
1519 *

1528 *

1521 *RESTORE REGISTERS BEFORE GOING TO USER PROGRAM
1522 *

1523 *

1524 *

1525 *

1526 *REGISTERS USED

1527 *

1528 *R@ THRU R2‘ PSU PSL

1529 *

1538 *SUBROUTINES CALLED

1531 *

1532 *UREG+9 RESTORE PSL

1932 x

1534 *RAM MEMORY USED

1535 *

1936 *UREG = R

1537 *UREG+L =R

1538 *UREG+2 = R2

1539 *UREG+3 = R3

1540 *UREG+4 = RY’

1541 *REG+3 = R2’

1542 *UREG+E = R3’

1543 *UREGH? = PsU

1544 *UREG+E = PSL

1545 *UREG+9 = PPSL INSTRUCTION OPCODE

1546 *UREG+10 = PSL

1547 *JREG+11 = RETC, UN INSTRUCTION OPCODE
1548 *

1549 " X R L 2 2 3 AT FORFOR Oy Y SRS EXLERS RIS A DS ER DL DS L4
1550 1E77 8577 RESTRG LODI.RL H’77/  PPSL INSTRUCTION OPCODE
1551 1E79 CDA7FB STRA, R1 UREG+9 CPEATE A SUBROUTINE TO RESTORE PSL
1552 1E7C 8517 LODI.RL H/47°  RETC.UN INSTRUCTION OPCODE
1552 1E7E CDA7FD STRA: R4 UREG+11

1554 1E81 7510 CPSL RS CLEAR REGISTER SHITCH
1555 4EQ2 aD17F3 LODA; R UREG+1 RESTORE R4

1956 1E86 GEL7F4 LODA. R2 LREG+2 PRESTORE R2

1957 1EQ9 @F17FS LODA, R2 UREG+Z RESTORE B2

1558 1ESC 7710 PPSL RS SET THE REGISTER SWITCH
1553 1ESE @D17F¢ LODA, R4 UREG+4 RESTORE R1‘

1568 1E91 BE17F7 LODA, R2 UREG+S RESTORE R2‘

1561 1E%4 OF17F8 LODA, R3 UREG+6 RESTORE RZ”

1562 1E97 @C17F9 RESTRL LODA.R@ UREG+? GET PSU DATA

1562 1E9A 6C17F1 IORA, R@ IFLG  SET INTERUPT INHIEIT IF REQUIRED
1564 1E9D 92 LPSl RESTORE PSU

1565 1E9E BCi7F2 LODA,R@ UREG  RESTORE RB

1566 1ERL 7SFF CPSL 255 CLEAR PSL

1567 1EAR ZF17FB BSTA: UN UPEG+9 RESTORE PSL

1568 1ER6 1FI7ES BCTA.UN *LADR  GOTO USER

1569 *



TWIN ASSEMBLER YER 2.@  INSTRUCTOR 5@ PRGM 11/1/78 PRGE @@z

LINE ADDR OBJECT E SOURCE

1571 ' HRRK bRk
1572 *

1572 *

1574 *SUBROUTINE TO SAVE Ri,R2.RZ
1573 *

1576 *REGISTERS USED IN BANK ON EMTRY
1577 *

1578 #R1 SAYED IN SAYREG+1

1579 ¥RZ SAYED IN SAVREG+2

158a *R2 SAYED IN SAYREG+3

1581 *

1582 *SUBROUTINES CALLED

1583 *

1584 *NONE

1585 *

1586 *RAM MEMORY USED

1587 ¥

1568 *SAYREG+L

1589 *SAYREG+2

1592 *SAYREG+3

154 Tkl ok ook ok kbR kol fokokokkok st b o dobok

1592 1ERS CDAVDA SAYR@ STRA,RL SAYREG+1
1593 1EAC CE17DE SRYR@1 STRA, k2 SAYREGH2
1594 1EAF CF17DC SAYR@Z STRA, R SAYREG+2

1595 1EB2 17 RETC, UN

1596 00 sopkpkiokkkkkmiookiokiokkakololoksioorskolaolkokokrdoloktok ok bk bbbktk ey b
1597 *

1598 *

15399 *SUBROUTINE TO RESTORE R1.R2,R3
1600 *

1601 *

1662 *REGISTERS USED IN BANK ON ENTRY
1682 *

1684 *R1 RESTORED TO VALUE IN SAYREG+1
1685 *R2 RESTORED TO VALUE IN SRVREG+2
16086 *R3 RESTORED TD YALUE IN SAVERG+3
1667 *

1688 *SUEROUTINES CALLED

1689 *

1618 *NONE

1611 *

1612 *RAM MEMORY USED

1643 *

1614 *SAYREG+L

1645 *SAYREG+2

1616 *SAYREGH2

1617 otkdokobokop kb ¥
1618 1EBR @9F5 RESTR@ LODR, R1 *SAVRB+L

1619 1EBS OAF6 LODR; R2 *SAYRA1+1

162a 1EB? @BF7 LODR, RZ *SAVRE2+1

1621 1EB9 17 RETC, UN



THIN ASSEMBLER VER 2.8 INSTRUCTOR 50 PRGM 11/1/78 PAGE @824

LINE RDDR OBJECT E SOURCE

1623

1624

1625

1626

1627

1628

1629

1638

1631

1632

1633

1634

1635

1636

1637

1638

1639

1648
1641

1642

1643

1644
1645

1646

1647

1648

1643
1658
1651

1652
1652

1654

1653

1656

1657

1658

1659
1668

1661

1662 a1
1663 9088
1664 4013
1665 @@az
1666 0996
1667 @809
1668 6ooF
1669

1678

1671

1672

1673

1674 1EBA 3B6D
1675 1EBC D487
1676 1EBE @7@e
1677 1ECE C8AR

*

*

*CASSETTE 10 ROUTINES

*PROGRAM WRITTEN BY BBC

*

¥ B4-27-77

*

* THESE ROUTINES WRITES OR RERDS ONE BYTE TO OR FROM
* THE CASSETTE IN SIMCR FORMAT

*

* THE FREQUENCY IS DETERMINED BY FREQ

* (CYCLE TIME IS 3. 332 MICRO-SEC.)
*

*
*ROUTINES SAYE AND REESTORE F4,R2, R OF CURRENT BANK
*

*IN RETURNS WITH DATR BYTE IN R@

*QUT REQUIRES BYTE TO BE OUTPUT TO BE IN P8

*

*TCAS IS THE CASSETTE RERD TEST USED TO SET LEVELS ON PLAY ERCK
*

*SEE FRONT OF PROGRAM FOR DISPLAYS AND INSTRUCTIONS -
*

*

*REGISTERS USED

*

*R@, R1. R2, R ARE SCRATCH

*

*SUBROUTINES CALLED

¥

*SAYR@ SAVES R1,R2.R3

*RESTR@ RESTORES R1.R2,RR

*

*RAM MEMORY USED

*

*TEMP  TEMPORARY STORAGE
*

* Fokkokdok k¥ AR SES RSS2SR 2 X R R O H TR R S
FREQ  EQU 17 PULSE TIME ¢ 8 2 MSEC. »
SPDLY EQU B4FREQ  INTER-BIT SPACE
TMDLY EQU 19 TIME-OUT FOR INTER-BIT DETECTION
PULST EQU 2 NUMEER OF PULSES FOR A OME
FULSe EQU 2+PULSL NUMBER OF PULSES FOR A ZERD
THRES EQU IPULSL TRANSITION THRESHOLD FOR DETECTION
EBIT EQU MPULSY TRANSITION THRESHOLD FOR END BIT
*

*

* SUBROUTINE OUT

* WRITES ONE BYTE FROM R® T0O CASSETTE

¥

QUTT  BSTR.UN SRYR@  SAVE R1-R3
WRTE,R@ LEDS  WRITE BYTE TO LEDS FOR DISFLAY
LODL.R? 8 BIT COUNT

OUTL  STRR.RB *QUTS+1 TEMP  SAYE BYTE IN TEMP



THIN RSSEMELER VER 2. @

INSTRUCTOR 5@ PRGM 11/1/78 PAGE @835

LINE ADDR OBJECT E SOURCE

1678 1EC2 CBAA
1673 1EC4 8506
1680 1ECE F4e1
1681 1ECE 9861
1682 1ECA 51
1683 1ECB FBB2
1684 1ECD 8586
1685 1ECF 8611
1686 1ED1 @718
1687 1EDZ D7FE
1688 1EDS FAVE
1689 1ED7 @611
1698 1ED9 @710
1691 1EDB D7F8
1692 1EDD FA7E
1693 1EDF F96E
1694 1EE1 8688
1695 1EE3 @760
1696 1EES D7FE
1697 1EE7 FAVE
1698

1699 1EE9 BC17CE
1760 1EEC 50
1701 1EED @F17C7
1782 1EF@ FB4E
1703 1EF2 3F1EBZ
1784 1EFS 17
17@5

1786

ive?

i7es

1789 1EF6 IF1ERS
1710 1EF9 20
1711 1EFR 44FE
1712 1EFC CBEC
1713 1EFE 3BoA
1714 1Fe@ 88ES
1715 1Fe2 58
1716 1F@3 5975
1717 1F@S 3BEC
1718 1Fe7 D4e7
1719 1F@9 17
1720

1724

1722

1723

1724 1FeA @580
1725 1FGC DSF8
1726 1FeE 12
1727 1FeF @7FF
1728 1F11 @6FF
1729 1F13 1B@2
1738 1F15 @613
1721 1F17 C1
1732 1F18 876
1733 1F1R 12

STRR. R3 *QUTE+1 TEMP+1 SAVE BIT COUNT IN TEMP+1
LODI.R1 PULSB  GET NUMBER OF PULSES FOR A ZERO

TMLR® H’8i’ TEST FOR R ONE
BCFR.@ OUT2
RRR, R1 DIVIDE COUNT IF R ONE
0UT2  BDRR.RX OUTZ  CHECK FOR LAST BIT
ADDI.RL PULS®  YES, ADD LAST BIT PULSES
QUT?  LODI.R2 FREQ  LENGTH OF PULSE
LODI.RZ H/18°  SET ENY AND FREQ
WRTE. R2 CRS
BORR, R2 § DELRY 1@ MICRO-SEC PER ITERATION
LODI,R2 FREQ  LENGTH OF PULSE
LODI P2 H/1@”  RESET FREQ
WRTE, R3 CAS
BORR, R2 $ DELAY 1@ MICRO-SEC PER ITERATION
BDRR.RL OUT? DO NEXT PULSE
LODI.RZ SPDLY  INTER-BIT SPACE
LODI.R3 H’88’  TURN OFF ENY AND FREQ
WRTE, R3 CRS
BORR, R2 $ DELAY 18 MICRO-SEC PER ITERATION
%
0UTS LODA.R@ TEMP  GET CHARACTER BACK
RRR, R@ ROTATE RIGHT ONE PLACE
OUT6  LODA.R3 TEMP+1 GET BIT COUNT
BORR.R2 OUTL  CONTINUE IF COUNT NON-ZERD
OUT4 BSTA,UN RESTRG RESTORE R1-R2
RETC, UN ELSE, RETURN
*
* SUBROUTINE IN
* READS ONE BYTE FROM CASSETTE TO R@
*
INN  BSTR,UN SAVR®  SAVE R1-R2
EORZ R@ SET R@ TO ZER0
INL  ANDLR® WFE’  MASK OUT LOMW BIT
STRR.R *0UTS+L TEMP  SAVE PARTIAL BYTE
BSTR.UN GBIT  GET NEXT BIT
ADDR. kA *0UTS+L TEMP  ADD IN PARTIAL ENTE
RRR. R@ MOVE NEW BIT TO HIGH POSITION
BRMR.RL INt  TEST LRST BIT FLAG
BSTR. UN *0UT4+1 VES, RESTORE R1-R3
WRTE,R® LEDS  WRITE BYTE TO LEDS FOR DISPLAY
RETC, UN RETURN

*

* SUBROUTINE TO GET THE NEXT BIT FROM CASSETTE
* BIT IS RETURNED AS LEAST SIGNIFICANT BIT OF R@

*

GBIT

GBT2
GBT3

GBT4

LODI.R1 H 88’
KRTE. R1 CRS
SPsu

LODL.R3 -1
LODI. R2 H'FF*
BCTR, UN GBTZ
LODI, R2 TMDLY
STRZ M
ADDI.R2 1
SPSu

SET SENSE TO CASSETTE
GET PSU
SET TRANSITION COUNT TO -1

SET TIME-OUT TO MAX FOR FIRST TRANSITION

SET END-OF-RIT DETECTION DELAY

SAVE LAST COPY OF PSU IN R
INCREMENT TRANSITION COUNTER
LOOK FOR TRANSITION

C-35



THIN RSSEMBLER VER 2.9

LINE ADDR OBJECT E SOURCE

1734 1F1B E1
1735 1FAC 9877
1736 1F1E FA7A
1737 1F26 20
1738 1F21 D4Fg
1739 1F23 @504
1740 1F25 E7eF
1741 1F27 9993
1742 1F29 A7eC
1743 1F2B C1
1744 1F2C E7@9
1745 1F2E 15
1746 1F2F @401
1747 1F31 17
1748

1749

1758

171

1752 1F22 9588
1752 1F34 DSFR
1754 1F36 8748
1755 1F28 D4a7
1756 1F3R D7F9

1757 1F2C CF17C7

1758 1F3F @seA

1759 1F41 CE17C6

1768 1F44 B4
1761 1F46 GAFA
1762 1F48 @ser
1762 1F4A 6@

1764 1F4B 1801
1765 1F4D 51

1766 1F4E a3

1767 1F4F 1867
1768 1F51 M

1769 1F52 9304
1778 1F54 FREB
1771 1F56 1BSE
1772 1F38 190R
1772 4F5A @8E1
1774 1F5C E4DE
1775 1F5E 1874
1776 1F6a @73F
1777 1F62 1B54
1778 1F64 @7DE
1779 1F66 1B5@

GBTS

*
*

IRSTRUCTOR 5 PRGW 44478

oMz R
BCFR, E@ GRT2
BDRR. R2 GBT4
EORZ Re
WRTE, Ra CAS
LODI,R1 1
COMI, R3 EBIT
BCFR, GT GBTS
SUBI, R2 2%PULSA
STRZ R
COMI, k3 THRES
RETC. GT
LODI,Ra 1
RETC, UN RETURN

PRAGE BR2E

IF NOT EQUAL NEW TRANSITION
IF EQUAL, TEST TIME-QUT
SET R8 TO ZERO

SET SENSE BACK TO USER
PRESET END FLAG TO 1
ENDBIT THRESHOLD

LAST BIT, SUB ENDRIT PULSES

AND SET END FLRG

IS COUNT GREATER THAN THRESHOLD
RETURN IF TRUE

NO. SET BIT TO ONE

* SUBROUTINE TEST CASSETTE READS

*

TCAS

1059
TCs1

TCs10

TCs2

TCS2

TC535

TCS4

TC55

LODI.RL H’88’
WRTE, R1 DIGIT
LODI, R3 H’48”
WRTE. R@ LEDS
WRTE, R3 DISP
STRA, R2 TEMP+1
LODI,R2 10
STRA. R2 TEMP
BSTR. UN GBIT
LODR, R2 *TCS2+1
LODI. R1 2+PULSA
I0RZ Re
BCTR, E@ TCSZ2
m} Ri

LopZ  R3
BCTR, EG TCS1
SuBz K
BCFR. EQ TCS4
BORR, R2 TCS2
BCTR, UN TCSa
BCTR. GT TCSS

LODR. R@ *TCS518+1

COMI. R@ H'DE”
BCTR. EQ TCS35
LODI.R3 H73E”
BCTR, UN TCS1
LODIL, B2 H/DE’
BCTR. UN TCS1

SELECT LEAST SIGNIFICANT DIGIT

OUTPUT ‘- 10O DISPLRY

QUTPUT VALLE TO LED’S

OUTPUT TO DISPLRY

SRVE D CONDITION

RETURN RFTER 1@ EXACT PEADS

SAVE R2

GET A BIT

TEMP  RESTORE R2

NUMBER OF TRANSITIONS FOR R ZERD

GET CONDITION CODE FOR Re

BRANCH IF A ZERO

DIVIDE NOMINAL TRANSITION COUNT BY 2
GET COUNT IN Ro

BLANK DISPLAY IF @

TEST COUNT

IF NOT EQUAL. RETURN

IF EQUAL AND COUNT NOT UP. GET NEW EIT

DETERMINE POLARITY
TEMP+1 GET UD CONDITION
DOWN CONDITION
CANT GO DIRECT FROM DOWN TO UP
OUTPUT ‘U7 TO DISPLRY

QUTPUT ‘D’ TO DISPLAY



TWIN RSSEMBLER VER 2.0

INSTRUCTOR 58 PRGM 11/1/78 PAGE @037

LINE ADDR OBJECT E SOURCE

1vel

1782

1783

1784

1783

1786

1787

1788 1F63 3FBESEAF
1F6r 666D70E7
1F78 7F6777FC
1F74 39DE7971

1789

1799

1791

1792 1F78 73383ES0
1F7C 765C4000
1FE8 @E4A8AEE
1F84 54

1792

1794

1795

1796 1F85 178E1213
1F89 15131747

1797

1798

1799

188@ 1F6D 170faDic
1F91 17171717

1001

1g@2

1883

1884 1F95 17140E11
1F99 11681717

1885

1886

18a7

1868 1F3D 1veB1e16
1FAL 17171717

1889

181@

1841

1812 1FRS 17171317
1FA9 16171717

1813

1614

1845

1816 1FAD 17188C16
1FB1 17171717

1847

1818

1819

1628 1FBS 17176F1i¢
1FB9 17171717

1821

1822

*

*HEXTAB LOOKUP TRBLE FOR HEX TO SEVEN SEGMENT

*

*THIS TARELE CONTRINS THE VALUES FOR LIGHTING THE

*SEGMENTS FOR THE DIGITS @ THRU 9 AND LETTERS A TO F
*

SEGTBL DATA  H’3F. @6, 5B. 4F, 66, 6D, 7D. 07, 7F. 67, 7

7. FC, 29, DE. 73,717

rd

¥

*SEGMENT DATA FOR SYMBOLS P L URH O = BLANK J - .
*

YN

DATR W73, 38, 2E. 5. 76, 5C, 48, 09, GE. 40, 36, 6E. 54”7

*

*THIS TABLE CONTHINS THE DISFLAY ERROR
*

ERROR DATA H17,8E, 13,12, 15,12, 17. 17/

*

*THIS TRBLE CONTAINS THE DISPLAY AD=
*

ADR  DATR  H/17.8A. 6D, 16.17,17.17. 477

*

*THIS TABLE CONTRINS THE DISPLAY HELLO
*

HELLO DATR  H’417.14.0E.11.11.08,17, 177
%

*THIS TABLE CONTRINS THE DISPLARY BP=

*

BPEE DATA  H717.0B,18,16.17.17.17. 17/

*

#THIS TRELE CONTRINS THE DISPLAY R=
*

RER  DATA  H/17.17.13.17.16,17,17. 17’

*

*THIS TABLE CONTARINS THE DISPLAY PC=
*

PCEQ DATA  H’17,18,6C, 16,17, 17,17, 177

*
*THIS TABLE CONTRINS THE DISPLAY F=
*

FER  DATA  H/17.17,06F,16,17,17,17, 17’

X
*THIS TABLE CONTRINS THE DISPLAY LAD=



TWIN ASSEMBLER YER 2.@  INSTRUCTOR 58 PRGM 11/1/78 PAGE @838

LINE RDDR OBJECT E SOURCE

1823

1824 1FBD 118A4D16
1FC1 17471747

1823

1826

1827

1828 1FCS 20213233
AFC9 34353637
1FCD 38394142
1FD1 43444546

1829

*

LADEQ DATA  H’11.6A,80,16,17.17.17, 177

*

*THIS TRBLE IS THE ASCII LOOK UP TRBLE
*

RSCII DATA  A’8123456789RBCDEF’



TWIN ASSEMBLER YER 2.8 INSTRUCTOR 5@ PRGM 11/1/78 PRGE @829

LINE ADDR OBJECT E SOURCE

1831 : ' Yhdokk
1832 *

1833 *

1824 *USER ENTRY TO DISPLAY ROUTINES

1835 *

1836 *

1637 1FDS BBFE USRDSI ZBSR ~ #MOY  SET UP DISPLAY

1838 1FD7 @3 LopZ  R3 GET DISPLAY FLAG

1833 1FD8 BBEC ZBSR  #DISPLY GO TO DISPLAY ROUTINE

1848 1FDA 17 RETC, UN



THIN ASSEMBLER VER 2.8  INSTRUCTOR 5@ PRGM 11/1/78 PAGE @840

LINE ARDDR OBJECT E SOURCE

1842 KRR PR
1843 1FDB ORG 8192-26 THE ZBSR OR ZBRR VECTORS ARE HERE

1844 R EERR R

1845 1FEG 1FDS USRDSP ACON  USRDSI USER ENTRY TO DISPLAY ROUTINES

1346 1FER 1899 ERR  ACON  ERRI  ERROR MESSAGE

1847 1FER 19E8 BRKPT4 ACON  BRKPTI SET DISBUF6, 7 WITH CONTENTS OF R@
1848 1FEC 1E13 DISPLY ACON  DISPLI DISPLAY FND KEYBORRD ROUTINE

1849 AFEE 1EF6 IN  ACON INN  CASSETTE INPUT ROUTINE

1850 1FFD 1EBA OUT  ACON  QUTT  CRSETTE QUT PUT

1851 1FF2 4C7B HOUT ACON  HOUTT  CRGSETTE BINARY TO ASCII HEX OUTPUT
1852 1FF4 1A76 DISLSD ACON  DISLSI CONVERT BYTE TO NIBBLE

1853 1FF6 1BAS ROT  ACON ROTI  ROTATE A NIBBLE

1854 1FFg 4072 CRLF ACON  CRLFF  CARRAGE RETURN AND LINE FEED

1855 1FFR 1838 GNP ACON GNPl GET NUMBERS

185 1FFC 1820 GNFA  ACON  GNPAI  GET NUMBERS AND DISPLAY

1857 1FFE 1DBE MOV ACON  MOYI  MOYE DATA TO DISBUF

1858 KRR R R R ot
1859 1808 END  SAYRG

TOTRL ASSEMBLY ERRORS = @0eo

C-40



APPENDIX D — ASCIl CONVERSION TABLE

ACSII CHARACTER SET (7-BIT CODE)
M.S.
CHAR | 0 1 2 3 4 5 6 7
L.S. 000 | 001 | 010 {011 | 100 | 101 | 110 | 111
CHAR

0 0000 |NUL |DLE | SP 0 @ P p
1 0001 |SOH | DC1 ! 1 A Q a q
2 0010 |STX |DC2 | ” 2 B R b r
3 0011 |ETX |DC3 | # 3 C S c s
4 0100 |EOT |DC4 | $ 4 D T d t
5 0101 | ENQ |NAK | % 5 E U e u
6 0110 | ACK |SYN | & 6 F Vv f v
7 0111 | BEL |ETB | 7 G W g w
8 1000 | BS |[CAN | ( 8 H X h X
9 1001 | HT | EM ) 9 1 Y i y
A 1010 | LF |suB | * : J z i z
B 1011 | VT |ESC | + ; K [ k {
C 1100 | FF | FS , < L \ | |
D 1101 | crR | GS | — = M ] m }
E 1110 | SO | RS | e > N t n ~
F 1111 | st [us | / ? 0 3_7 o | DEL







APPENDIX E —
DECIMAL TO HEX CONVERSION TABLE

HEXADECIMAL COLUMNS

6 5 4 3 2 1
HEX = DEC HEX = DEC HEX = DEC HEX = DEC HEX = DEC HEX = DEC
0 0 0 o|o 0 0 0 0 0o 0
1 1,048,576 1 65,536 | 1 4,096 1 256 1 16 | 1 1
2 2,097,152 2 131,072 | 2 8,192 2 512 2 32 | 2 2
3 3,145,728 3 196,608 | 3 12,288 3 768 3 48 | 3 3
1 4 4,194,304 4 262,144 | 4 16,384 4 1,024 4 64 | 4 4
5 5,242,880 5 327,680 | 5 20,480 5 1,280 5 80| 5 5
6 6,291,456 6 393,216 | 6 24,576 6 1,536 6 96 | 6 6
7 7,340,032 7 458,752 | 7 28,672 7 1,792 7 1127 7
8 8,388,608 8 524,288 | 8 32,768 8 2,048 8 128 | 8 8
9 9,437,184 9 589,824 | 9 36,864 9 2,304 9 144 | 9 9
A 10,485,760 A 655,360 | A 40,960 A 2,560 A 160 | A 10
| B 11,634,336 B 720,896 | B 45,056 B 2,816 B 176.1 B 11
C 12,582,912 C 786,432 | C 49,152 C 3,072 C 192 | C 12
D 13,631,488 D 851,968 | D 53,248 D 3,328 D 208 { D 13
E 14,680,064 E 917,504 | E 57,344 E 3,584 E 224 | E 14
F 15,728,640 F 983,040 | F 61,440 F 3.840 F 240 | F 15

E-1










B e T PPNV O T SR T IND-S (R S,

S e




	UG_00_0001
	UG_00_0002
	UG_00_0003
	UG_00_0004
	UG_00_0005
	UG_00_0006
	UG_00_0007
	UG_00_0008
	UG_00_0009
	UG_00_0010
	UG_01_0001
	UG_01_0002
	UG_01_0003
	UG_01_0004
	UG_01_0005
	UG_01_0006
	UG_01_0007
	UG_01_0008
	UG_02_0001
	UG_02_0002
	UG_02_0003
	UG_02_0004
	UG_02_0005
	UG_02_0006
	UG_02_0007
	UG_02_0008
	UG_03_0001
	UG_03_0002
	UG_03_0003
	UG_03_0004
	UG_04_0001
	UG_04_0002
	UG_04_0003
	UG_04_0004
	UG_04_0005
	UG_04_0006
	UG_04_0007
	UG_04_0008
	UG_04_0009
	UG_04_0010
	UG_04_0011
	UG_04_0012
	UG_04_0013
	UG_04_0014
	UG_04_0015
	UG_04_0016
	UG_04_0017
	UG_04_0018
	UG_04_0019
	UG_04_0020
	UG_04_0021
	UG_04_0022
	UG_04_0023
	UG_04_0024
	UG_05_0001
	UG_05_0002
	UG_05_0003
	UG_05_0004
	UG_05_0005
	UG_05_0006
	UG_05_0007
	UG_05_0008
	UG_05_0009
	UG_05_0010
	UG_05_0011
	UG_05_0012
	UG_05_0013
	UG_05_0014
	UG_05_0015
	UG_05_0016
	UG_05_0017
	UG_05_0018
	UG_05_0019
	UG_05_0020
	UG_05_0021
	UG_05_0022
	UG_05_0023
	UG_05_0024
	UG_05_0025
	UG_05_0026
	UG_06_0001
	UG_06_0002
	UG_06_0003
	UG_06_0004
	UG_06_0005
	UG_06_0006
	UG_06_0007
	UG_06_0008
	UG_07_0001
	UG_07_0002
	UG_07_0003
	UG_07_0004
	UG_07_0005
	UG_07_0006
	UG_07_0007
	UG_07_0008
	UG_07_0009
	UG_07_0010
	UG_07_0011
	UG_07_0012
	UG_07_0013
	UG_07_0014
	UG_07_0015
	UG_07_0016
	UG_07_0017
	UG_07_0018
	UG_90_0001
	UG_90_0002
	UG_91_0001
	UG_91_0002
	UG_91_0003
	UG_91_0004
	UG_91_0005
	UG_91_0006
	UG_91_0007
	UG_91_0008
	UG_91_0009
	UG_91_0010
	UG_92_0001
	UG_92_0002
	UG_92_0003
	UG_92_0004
	UG_92_0005
	UG_92_0006
	UG_92_0007
	UG_92_0008
	UG_92_0009
	UG_92_0010
	UG_92_0011
	UG_92_0012
	UG_92_0013
	UG_92_0014
	UG_92_0015
	UG_92_0016
	UG_92_0017
	UG_92_0018
	UG_92_0019
	UG_92_0020
	UG_92_0021
	UG_92_0022
	UG_92_0023
	UG_92_0024
	UG_92_0025
	UG_92_0026
	UG_92_0027
	UG_92_0028
	UG_92_0029
	UG_92_0030
	UG_92_0031
	UG_92_0032
	UG_92_0033
	UG_92_0034
	UG_92_0035
	UG_92_0036
	UG_92_0037
	UG_92_0038
	UG_92_0039
	UG_92_0040
	UG_92_0041
	UG_92_0042
	UG_93_0001
	UG_93_0002
	UG_94_0001
	UG_94_0002
	UG_99_0001
	UG_99_0002

