

```
ENJFRRING CONSMANOS AND H&XT
TGT BASIC MONOORY MAP
STRING lIANDIHNG CAPA!D!dTlES
EXPRESSIONS
COMMAND MODE
    NIJW
    CLEAR:
        1,IST
        RUN
        SI%E
        DUMP
EXECUTION MOIDE
        LET
        GOTO
        JF
        PRIN'T
        F1X
        INPUT
        GOSUB
        RITURN
        FCR
        NEXT
        DO
        UNTIL
        REM
        STOP
        pipibug
FUNCTIONS
COMPLETE BACKUS-NAUR
FLOW CHART REPPRESENTA'IION OF AN EXPRESSION
SAMPLE PIOOGRAM
LISTING
```

TCT BASIC
TAPE DETAILS.
SIDE A: TCT BASIC
110 baud binary format with
loader in PIPBUG format.
SIDE B: TCT BASIC OPTIONS
1. Kaindom
110 taind PIPBUG format.
2. Sllie
110 baud pipbug format.
mote this thpe of tet dasic is fully copyright mind may
hot be copied without erpress consent of the
abthors.

The 'Bactus-Naur' form of syntactic description is beed throughoit this manual to define the legal construcion of statemente.

In Backus-Naur form syntactic constructs are denoted by Fnglish words enclosed in '<' and '>' signs. These words are chosen to suggest the nature and meaning of the construct which they repregent. For example, '<expression>' is used often and denotes any legal combination of arithmetic variables and operators (addition, multiplication, etc).

The vertical slash $1 /$ is used to separate mutually exclugive. possibilities and may be read as 'or'. For erample〈expression>: :=(<expression>)/ <expression> means that an expression may be another expression enclosed in brackets or just another expression. (This form of recursive definition is common in the description of 'high level languages'.)

Finally there exists the symbol '::=' which may be read as 'is defined as being', or just 'is'. An example is given above.

These three basic symbols are used to describe the syntax of statements and atatement construction.

Those symbols which appear on their own (i.e. are not enclosed by '<' and '>') are actual characters and symbols which appear in the text which is being described. The simplest example of this is the Backus-lVaur of the 'RETURN statement' <return statement>::= RETURN

All input to the Basic interpreter is made ihrough an inbuitt cinge line text editor. Whilst the user is in communication with the cator certain control chavacters are reserved for special functions. These characters are: CR Used to delimit the curaent line of input.
BS Deletes one character from the end of the current line.
DEL Deletes the entire line wirh has been input up to that point and re-prompts.

When CR is pressed control is passed to the rest of the interpreter. At this stage there are two possibilities, that the line is entered into the users program file, or it is interpreted as a command and executed immediateiy. The criteria which determines which of these is performed s whether or not a number preceeds the statements on a line.

In general if an input line starts with a number it will be interpreted as a line to be entered into the user's program file at the appronriate point. If an input lire has no recognicable number preceeding it then it will be exected immediately, irrespective of whether it is a command or an executable statement.
To delete a line fron the prog:am file the line's number should be typed followed by a CR.

The manner in which strings are landed in TCT BASIC is oonowhat different from that of most other BASICs and so will be disciseed in some detail.

In mos: implementations of the $B A S I C$ language otrings are incntified by a letter of the alphabet with either a leading or trailing ' $\$$: eign. This construct has severe limitations in that there is only a very limited number of strings available, and moxe importantly, strings cannot be referenced by some calculation, which also limits the number of stings which can be effectively handled.

To overcome this limitation it was decided to identify strings with four digit numbers, and allow expressions to be used to determine these numbers in all string handling operations. These string identifying numbers obey all the rules associated with line rumbers, i. e. they must be greater than zero and less than 10000°

Truncation of string identifying numbers is performed in all operations.

In this manner strings may be handled in volume and with ease, yet there are of course linnitations imposed by the physical size of the BASIC interpreter. These points are noted below.

1) Strings may not be 'merged' or in ヨny way 'put together' or'taken apart'. I. e. constructs of the form $\$ 1=\$ 2+\$ 3$ are not allowed. (This is perhaps the only major limitation.)
2) The only comparisons which may be made between otrings are those of equality or inequality, and these comparisons must be made in terms of string identifyers, not literals enclosed in quote marks.
3) Due to the large number of possible strings it is of course necessary to release memory epace occupied by a null string (i.e. an empty string, which all sirings are before they are asoigned a value) completely. For this reason it is impossible to operate on a null string. However it is possible to detect that a string is empty by the provision that it returns a true value for all comparisons. This is a useful facility when dealing with user input where the response to a request is often just a carriage return.

Strings are stored in memory from the end of the program text onwards through available RAM. It is the user's responsibility to ensure that the length of the file does not exceed the machines memory limit.

The DUMP command is the mears by which an existing BASIC program may be recorded for latter loading and use.

The form of the DUMP statement is the word DUMP followed by an optional line number.

The DUMP cemmand is fundamentaly the same as the LIST command except that no line feed is performed at the end of cach list ed line and a delay is inserted instead. This allows a pzogram listed in this manner to simply be played back from the tape recorder and inserted as text in the program file.

The proceedure for using this command is:

1) Type the word 'DUMP' followed by a line number if desired.
2) Set the tape recorder to 'RECORD'.
3) Type carriage return.
4) when dumping is completed stop the tape recorder.

To reload a recorded prograns:
Merely play the tape back whilst in command mode. The interpreter will initialy respond with a syntax error, this should however be ignored and is only duc to an unavoidable 'hash' on the tape.

```
We are sorry to say that some tapes posses errors effecting
the execution of the DUMP command, if you have one of these
tapes the fault may be remedied by performing the the following
operations in PIPBUG.
*A17D3
17D3 3F 77
17D4 02 10
17D5 86 06
17D6 E4 08
17D7 OD 12
17D8 14 1A
17D9 3F 7D
17DA 02 3F
17DB B4 02
17DC 77 AD
17DD 10 Cl
17DE 02 3F
17DF 75 17
17E0 10 F7
17El 17 3F
*
```

The typing of the word NEW followed by a carriage return eliminates all trace of any program file which may have been present, recets all internal stacks and pointers and clears all variables including strings.

If the BASIC interpreter is entered at the HEX address 0800 then a NFW command is executed allomaticaly. However if it ic entered at 080A then the program file will be unaltered (although variables will be cleared).

If the NEW command is ever entered accidentally jour program file may be recovered by exiting the BASIC interpreter and changeing the locations starting at HEX 1801 to:
1801. Tle high order 13CD code of the first line number. 1802 The low order BCD code of the first line number.
1803 The ASCII code of the first character of your text. 1804 The ASCII code of the second character of your text. Then entering the BASIC interpreter at 080 A.

THE COMMAND 'CLEAR'

The CLEAR command sets all variables to zero, and eliminates all strings.

It is implemented by typing the word CLEAR followed by a carriage return.

THE CCMMAND 'LIST'

The lIST command is the means by which the program file may be inspected, in part or whole.

The form of the LIST command is the word LIST followed by a carriage return, or the word LIST followed by a line number. The first form will start listing the program file from the firgt line, while the second form will start from that line with a line number greater than or equal to the specified number.

To suspend the listing process hold down the 'breali' key, if the 'break' key is not implemented or connected on your keyboard then hold down 'rept' (repeat) and 'space', listing should cease within a few lines.

The RUN command causes the interpreter to enter 'execution mode' and begin execution of the program stored in the program file at that line which posesses the lowest line number.

The RUN command is implemented by typing RUN followed by a carriage return.

After a RUN command has been executed the user's BASIC program will begin execution and continue until a STOP command or an error is encounted, or the 'break' key is depressed.

If it is desired to start program execution at some point other than the first line then a GOTO statement may be used. This will automaticaly put the interpreter in 'execution mode' and begin execution from the line specified. (c.f. 'THE GOTO STATEMENT')

THE COMMAND 'SIZE'

The SIZE command returns the HEX values of the start of the program file and the end for the user to check on the a vailable RAM left. (NOTE: This includes that area of RAM tacken up with strings.)

The form of the SIZE statement is simply the word SIZE followed by a carriage return.

The response is: $X X X X$ YYYY

Where XXXX is the address of the first byte of your file and YYYY is the address of the last byte of your file
(On this version of TCT BASIC XXXX will of course always be 1800.)

The LET statement is the basic operational statement of the BASIC langusge．It is by means of this statement that data is transferred and transformed between variables，whether they be numeric variables or literal strings．

The fundamental form of the LET statement is the word LET（optional）， followed by either a letter（for a numeric variable），or a＇$\$$＇followed by any legal numeric expression（for a literal or＇string＇variable．）This variable identifier is followed by an＇$=$＇，which is in turn followed by any legel numeric expression or a＇\＄＇followed by any legai numeric expression or a simple string．

This construct，when executed，will place the value derived from the right hand side into the variable specified on the left hand side．To make this aspect clearer it is best read＇is assigned the value of＇in place of the＇＝＇sign．

NOTE 1）The types of the expressions or variables on each side of the ＇＝＇should agree：that is if the right hand side returns a numeric value then the left hand side should be a numeric variable，and if the right hand side is a string，then the left hand side should be a st ring identifier（i．e．have＇\＄＇prefix）．

2）The initial LET keyword is entirely optional and may be deleted if desired．

3）The values of the variables on the right of the ${ }^{\prime}=$＇remain unchanged unless they apear on the left oi the statement．

The syntax of the LET statement may be sumarised as follows：
＜let statement＞：：＝LET〈assignement statement＞／＜assignment statement＞〈ascignement statement＞：：＝＜variable＞＝＜exprescion＞／＜string identifier＞＝ ＜string＞
＜string＞：：＝＜simple string＞／〈string identifier＞
EXAMPLES OF THE LET STATEMENT
LET $\Lambda=127 * 3$
$\mathrm{C}=2 * \mathrm{PI} * \mathrm{R} * \mathrm{R}$
\＄1＝＂YES＂
$\$ \mathrm{~A} * 5=\$ \operatorname{INT}(\mathrm{~B} / 27)$
The following are illegal uses of the LET statement due to mixed types：
A＝＂YES＂
LET \＄1 $=2 * P I * R * R$

The COTO statement is the means by which program flow is broken and resumed at another point.

The form of the GOTO statement is GOTO <expression>. Where the value returned by the expression must be a number greater than :cro and less than 10000 (trancation is automatic).

When executed.progran flow will be resumed at the begining of the line which has a number corresponding to the value of the expression, if no such line exists a 'NOGO ERROR' will result.

NOTE 1) A space may be inserted between the GO and the TO, that is the CCTO statement may read CO TO<expressions.
2) The value of the expression need not be an integer, it will be truncated automatically.

The syntax of the GOTO statement is,
<goto statement>::= GOTO<expression>
EXAMPLES OF THE 'COTO' STATEMENT
GOTO 120
GOTO $A+B * 10$
GO TO 970

EXECUTION MODE

The following pages describe those commands which may be executed within a program. Most of these commands or 'statements' may also be executed in command mode. However no commands are executable in execution mode (That is those commands which appear on the preceeding pages may not appear in a program.)

There are certain executable statements which may not be executed in command mode, these are:

INPUT
DO
UNTIL
FOR
NEXT

The IF statement is the mechanism by which desicions are made within a BASIC program, and diferent action teken deronding on some condition.

The fundamental form of the IF statement is the word IF followed by fither a string identifier or an expression. This is followed by a 'relational operator' which is in turn folloved by another otring identifier or expression. This is followed by any collection of statements on the same line.

If expressions were used in the IF statement, then upon execution these will be evaluated to two single numbers and compared in relation to the given'relational operator', or if strings vere used they will be compared letter for letter.
If the resultant 'relational expression' is true, then the rest of the line will be exccuted, however if it is false then control will immediately pass to the next line.

NOTE 1) Permissible relational operators for expreseions are:
$=$ equal to
<> not cqual to
<= less than or equal to
$\rangle=$ greater than or equal to
< less than
$>$ greater than
Permissible relational operators for strings are:
$=$ equal to
2) TCT BASIC's implementation of the IF statement is non-standard, strictly only a GOTO statement or the word THEN followed by a line number ehould follow the IF otatement.
3) The word THEN may be placed between an IF statement and its succeeding statement, yet this has no effect on its operation.
4) Simple strings may not be compared directly, i.e. all string comparisons must be made between predefined strings denoted by string identifiers.

The syntax of the IF statement is:
<if statement>::= IF <if value> <relational operator><if value> <if terminator>
〈if value>::=<string identifier>/ <expressiom
$\langle r e l a t i o n a l$ operator〉: : $=|\rangle|=\langle\mid\rangle=\mid\langle\mid\rangle$
<if terminator>::=<>/ THEN

The PRINT statement is the means by which output is obtaned from a BASIC program while it is executing; output of both the mmeric values of expressions or literal strings may be obtained.

The form of the PRINT statement is the word PRINT which may be abreviated to $P R$ in most circumstances, followed by a list of items to be printed. Separate items in the list are separated by commas and may be either strings or expressions. Expressions are printed as a numeric value the format of which may be controlled by the FIX statement (c.f.), while strings are reproduced verbatim less their leading and trailing quote marks. Normally a carriage return line feed is transmitted at the end of each PRINT statement. However this may be supressed if desired by the inclusion of a semicolon after the last item of the 'print list'.

NOTE 1) There is one circumbtance in which the abbreviation PR may not be used. This is something of the form PRINT INT (<expression >), for if the abbreviated form is used this becomes PRINT(<expression>), which will cause the value of the expression to be printed, not the integer part as would happen in the first instance. (However anything of the form PR "HELIJO", INT(A /PI) is still legal.)
2) If a trailing ';' is used then the next PRINT statement will print on the same line.
3) The word PRINT by itself will not cause a line to be fed as in some BASICs: that is a PRINT statement without a print list is not allowed and the form PR'"' should be used instead.
4) There is no mechanism for the inclusion of "marks to appear in strings and therefore they may not be printed, this is true of all special symbols except carriage return, which may be printed indirectly.

The syntax of the PRINT statement may be summarised as followes:
<print statement>::=PRINT<print list><print terminator>/PR <print list> <print terminator>
<print list>::=<print item>/<print list><print item>
<print item>::=<expression>/ <string>
<print terminator>::=<>/ ;

EXAMPLES OF THE PRINT STATEMENT

PRINT "YOUR CURRENT POSITION IS ", X, Y, "AND VELOCITY",V
PR RND(K)
PR \$1, A, \$4;

The FIX statement is the neans by vhich the format of numerdc output may be controlled.

The form of the FiX statement is the word FIX followed by a single digit or the letter ' S^{\prime}.

Execution of the FIX stetement merely scts a flag as to the format of numeric output, it has no effect on the internal calculations or manipulations of numbers at all. When a PRINT statement is executed and a number is to be print ed, this flag is inspected, if a fix of 'S' wa specified the number is printed in scientific notation: that is, as a ten digit number followed by an ' E ' and then the power. of ten to which it should be raised. If a digit was specified then the number will be printed in floating point format with the specified number of decimal places displayed; if the number is too large or too sriall to represent in floating point format then it will be printed in scientific format automatically.

NOTE 1) NO rounding is performed on the printing of floating point numbers.
The syntax of the FIX statement is,
<fix statement>:: $=$ FIX〈fix>
<fix>: $=0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / S$
EXAMPLES OF THE 'FIX'STATEMENT
FIX 1 result of a subsequent $\operatorname{PR} 127.89$ is 127.8
FIX S result of a subsequent 'PR 127.89'is 0.1278900000 E 03
FIX 9 result of a subsequent 'PR 127.89' is 127.890000000

The 'INPUT' statement is the means by which an executing BASIC program may receive information from the operator. Input may be in the form of an expression (for a numeric variable) or a string.

Tho form of the input statement is the word INPUT followed by a single character, this character is the 'prompt' which will be printed when the statement is executed. This prompt character is followed by an 'input list' which may be composed of single letter variables or string identifiers separated by commas.

Upon execution; the prompt character will se printed and the desired input should be entered from the keyboard or tape. The values which are typed in are assigned to the corresponding variable in the variable list (input list); the typed values must, of course, agree in type with the variables in the list. Numeric responses (if more than one) should be separated by spaces or commas. String, or literal variables, should be separated by carriage return.

NOTE 1) Expressions are allowable in place of a number when a numeric variable is being assigned a value. That is it would be legal to respond with 'PI/2' to the statement 'INPUT ? A '
2) It should be remembered that if a numeric variable appears in the input list then the response must be an expression, and if a string is required then the response must be a string also.
3) When responding to an 'INPUT' statement 'backspace' and 'delete' perform the same function as when entering normal commands and text.

The syntax of the INPUT statement is;

```
<input statement>::= INPUT <prompt> <input list>
<input list>::= <input item> / <input list>, <input item>
<input item>::= <string identifier> /<variable>
<prompt> ::= <non special character>
EXAMPLES OF THE'INPUT'STATEMENT
INPUT ?A, B,C a valid response would be, ?123.3,4, 4.5E-20
INPUT * $N a valid response would be, *HI THERE
```

The GOSUB statement is the mechanism by which subrontines may be called in a BASIC program.

The form of the GOSUB statement is JOSUB expression. Where the value of the expression is a amber greater than mero and less than 10000 (truncation is automatic).

When executed program flow will be temporarily diverted to the line with the number returned by the expression. Upon encountering
a RERURN statement program flow will be resumed from the line following the line where the last GOSUB appeared. If subroutines are nested too deeply a'NST ERROR' will resull. If the line number specified in the expression does not correspond to an actual line a 'NOGO ERROR' will result.

The syntax of the GOSUB statement is;
<gosub statement>::= GOSUB<expression>
EXAMPLES OF THE 'GOSUB' STATEMENT

GOSUB 1000
GOSUB INT(N/RND(R))

THE 'RETURN'STATEMENT

The RETURN statement is the means by which control is reverted to some main program after a GOSUB has been executed.

The form of the RETURN statement is merely the word RETURN.

When executed, control will pass to the line after the line on which the last GOSUB occured. If a RETURN is encountered by a program and no GOSUB has been executed corresponding to it (i.e. the program is at zero subroutine level) a 'RTN ERROR' will result.

NQTE 1) A RETURN statement must be the last statement on a line, for all statements after it will be ignored due to the fact that program flow has been resumed at another point.

The syntax of the RETURN statement is;

RETURN

EXAMPLE OF THE RETURN AND GOSUB STATEMENTS:
100 GOSUB 500

The FOR statement is the standafl method of creating loops in BASIC． A FOR NEXT loop，as it is called，will repeatedly execute a set of BASIC statements while incrementing a specified variable by a specifled amount，until that variable reaches，or exceeds，a particular value．

The form of the $F O R$ statement is the word $F O R$ followed by a numeric variable（the＇for－variable＇）this is in turn followed by＇$=$＇ then an expression（the＇start value＇）followed by the word TO then a second expression（the＇finish value＇）．After this an optional ＇step＇may be specified by the word STEP and an expression（the＇step value＇）．

When executed the＇for－variable＇is set to the＇start value＇and control is passed to the susequent set of statements．When the corresponding NEXT statement is reached the＇for－variable＇is incremented by the＇step value＇（if no step value was specified it is assumed to bel），and compared to the＇finish value＇．If the＇for variable＇is greater than or equal to the＇finish value＇control passes to the next statement．
If the＇for－variable＇is less than the＇finish value＇a GOTO is eaecuted to the stat ement after the FOR statement．
As a result if a construct of the form FOR $I=1$ TON
any collection of statements NEXT I
is used then the collection of statements will be executed N times．
NOTE 1）Fractional＇step values＇are allowed，yet if recurring decimals are used it should be remembe zed that they do not return an exact value．

2）It is not permissable to have a＇final value＇less than the＇start value＇or a negative step value：

3）FOR loops may only be nested 4 levels decp else a＇NST ERROR＇ will result．

4）FOR loops are the fastest method of performing recursive operations in TCT BASIC．

5）＇Offset＇n＇esting of FOR loops is of course not allowed，i．e． The first NEXT after a particular FOR must match that $F O R$ ．

The syntax of the $F O R$ statement is；
＜for statement＞：：＝＜simple for＞／〈simple for〉〈step＞
〈simple for〉：：＝FOR〈numeric variable〉＝〈expression＞TO〈expression〉
＜step＞：：＝STEP〈expression＞
（FOR EXAMPLFS SEE＇THE NEXT STA TFAENT＇）

The NEXT statement is the loop delimeter corresponding to the FOR statement.

The form of the NEXT siatement is the word NEXT followed by the same variahle as was specified in the last FOR statement. If a different variable is given a 'NX' ERROR' will result.

For a description of the effect of the NEXT statement see the FOR statement.

NOTE 1) A 'NXT ERROR' will result if a NEXT is encounted tefore a corresponding FOR statement.

The syntax for the NEX'r statement is;
<next statement>:: = NEXT <for variable>
EXAMPLES OF THE FOR AND NEXT STATEMENTS

FOR $1=1$ TO 10

PRINT "'"
NEXT I
FOR $A=1$ TO INT(RND(R)*N): PRINT "JUST ONCE MORE": NEXT A
FOR N=0.0 TO 25 STEP 2
$\mathrm{M}=\mathrm{M}+\mathrm{N}$
PRINT M
NEXT N

THE 'DO'STATEMENT

The DO statement is a non standard provision of TCT BASIC for the construction of loops. The DO UNTIL construct is in fact identical to the REPEAT UNTIL cor:struct found in PASCAL. The $D C$ statem ent is used when it is unknown how many times a particular operation is to be performed (unlike the FOR statement where it is necessary to knowhis at the loops comencment).

The form of the DO statement is simply the word DO followed by any group of statements.

When executed no inmmediate action is taken which has any effect on the users program, the address in text of the DO otatement is merely stored on an internal stack for reference by the next UNTIL statement. (See 'THE UNTIL STATEMENT' for a description of the operation of a DO-UNTIL loop.)

NOTE 1) A DO statement need rot be the last statement on a line.
2) DO loops are non-standard BASIC and bear no relation to the DO loops of FORTRAN, yet are similar to the REPEAT loops of PASCAL.

The syntax of the DO statement is;
<do statement>::= DO
(FOR EXAMPLES SEE 'THEUNTIL STATEMENT'.)

The UNPII, statement is the loop delimiter conresponitng to the DO statement.

The form of the UNTII, statement is the word 'UNTII, followed by any relaional expression (for an explanation of relational expressions see the IF statement.)

The effect of a DO UNTIL loop is to repeat the set of statements between the 'DO' and the 'UIVTIL' repeatedly until the relational expression after the 'UNTIL' returns a true value.

NOTE 1) The statements between the 'DO' and the 'UNTIL' will always executed at least once.

The syntax of the UNTIL statement is:
until statement $::=$ UNTIL relational expression
EXAMPLES OF THE DO AND UNTIL STATEMENTS

DO
$A=A+1$
UNTIL $\$ A=\$ 1000$

DO: INPUT ? A : UNTIL Aく25

THE 'REM' STATEMENT

The REM statement is the means of inserting documentation into a BASIC program.

The forra of the REM statement is the word REM followed by any string of characters.

The REM statement is ignored completely during execution of a program.

THE 'STOP' STATEMENT

The STOP statement is used to terminate an executing Basic program.

The form of the STOP statement is the word STOP followed by an y string of characters.

When this statement is executed the string of characters following the word STOP is printed out and the interpreter returns to command mode.

THE 'PIPBUG' STATEMENT

The PIPBUG statement is used to return control to the Philips monitor program 'PIPEUG' or any other program located at 0000.

The form of the PIPBUG statement is simply the word 'PIPBUG'.

FUNCTIONS

There are foir inbuilt functions in TCT BASIC. These are:

ABS	Returns the absolute value of its argument. MOD Calculates $A * F R A C(B / A) ~ w h e r e ~$
' A 'is the first argument and ' B ' is	
the second.	
INT	Returns the integer portion of its argument Returns the fractional portion of its argument.

The arguments to the functions are listed within brackets after the function name and separated by commas.

Two optional functions are available (RND and SIN) for detalls of their operation see the sheet supplied with the tape of TCT BASIC.

While on certain other tapes FRAC may not work correctly until the following is performed.
*A161A
161A D9 DE
*

To implement RND and SIN the relevant section of the tape must be loaded.
$\sin (A)$ wlll return the \sin of A
The function will only return true value if the number is between plus and minus pi.
RND(G) will randonize the variable and return the number.

BACUS NAUR

＜basic program＞：：＝＜basic line＞／＜basic program＞＜basic line＞
＜basic line＞：$:=$＜sequence number＜basic statemento CARRIAGE RETURN ＜sequence numbers ：：＝NUMBER
＜basic statement＞：：＝〈basic statement〉／〈basic statements〉：＜basic statement〉
〈basic statement〉：：＝det statement〉／〈fix statement〉／〈if statement〉／《until statement〉／《do statement＞／ «goto statement＞／«gosub statement»／＜return statement〉／〈next statement〉／ ＜for statement〉／＜print statement＞／＜input statement＞／＜stop statement＞／ ＜machine statement＞／＜rem statement）
《let statement＞：：＝LET＜assignment statement＞／＜assignment statement＞
〈assignment statement＞：：＝＜variable〉＝＜expression＞／〈string identifier〉＝〈string〉
〈fix statement〉：：＝FIX \｛fix〉
〈fix〉：：＝〈digit〉／S
＜if statemert〉：：＝IF 〈relational expression〉＜if terminator〉＜basic statements＞
＜if terminators ：：＝«＞／THEN
＜until statement＞：：＝UNTIL 〈relational expression〉
〈relational expression〉：：＝＜string relation＞／«expression〉＜relational operator〉 〈expression＞
（relational operator）：：＝$\rangle!=|\langle=\mid\rangle=\mid\langle/\rangle$
〈string relation ：：＝＜string identifier〉 $=\langle s t r i n g$ identifier〉
〈do statement）：：＝DO
＜gotot statements ：：＝GOTO＜expression＞
«gosub statement» ：：＝GOSUB 〈expression»
＜return statement＞：：＝RETURN
＜next statement＞：：＝NEXT wariable＞
〈for statement＞：：＝FOR 〈variable〉＝«expression＞TO＜expression〉〈step〉
〈step〉：：＝＜＞／STEP 〈expression〉
＜print statement＞：：＝PRINT＜print list＞＜print terminator＞／PR＜print list＞＜print terminator＞
＜print list＞：：＝«print item＞／रprint list〉，〈print item＞
〈print item＞：：＝«expression＞／〈string〉
＜print terminator）：：＝＜〉／
《input statement＞：：＝INPUT＜prompt＞＜input list＞
＜input lists ：：＝＜input item＞／〈input list〉，＜input item＞
＜input item＞：：＝＜string identifier＞／＜variable＞
＜prompts：：＝＜non－special character＞

```
(stop statement)::= STOP (comments
(rem statement) ::= REM (comments
ccomments ::= <)/ (character lists
<machine statement>::= PIPBUG
<expression>::= ( <expression>) / <expression> <operator> <expression>/ <value identifier>
<value identifier> ::= <number> / <variable identifier> / <function> / <constant>
<function\rangle ::= <function identifier\rangle (<expression list\rangle)
<expression list>::= <expression>/ <expression`, <expression list>
<operator>::= +/-/*//
<variable identifier>::= A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z
<function identifier>::= ABS/MOD/INT/FRAC/ coptional function>
<optional function>::= RND/SIN
<constant>::= PI
<number> ::= <decimal part> / <decimal part> <exponent>
<decimal part> ::= <integer> / <integer>. <integer> / . <integer>/<integer>.
<integer>::= <digit> / <integer> <digit>
<digit>::= 0/1/2/3/4/5/6/7/8/9
<exponent>::= E<integer>/ E<sign><integer>
<sign>::= +/-
<string>::= <simple string> / <string identifier>
<string identifier>::= $ <expression>
<simple string> ::= ." <character list>"
<character list> ::= mon special character>/ <character list> mon special character>
<non special character> ::= <any ASCII character except CR " DEL BS >
```

expression

term

factor

ELOW CHART REPRESENTATION OF THE SYNTAX OF AN UNSIGNED NUMBER

Line numbers given are those at which the error is detected.
STP ERROR No STOP on the end of the program. Line number given is the line number of the last line executed.
STMT ERROR Character(s) remaining after the logical end of statement.
VALU ERROR Computed value of an expression is out of range for a function or an overflow has occured.
NO" ERROR A string definition has no " to terminate it.
NOGO ERROR Line number evaluated does not exist.
RTRN ERROR A RETURN has been encounted without a GOSUB.
NEST ERROR Too many pending opperations in an arithmetic expression or too many nested FOR-NEXT or DO-UNTIL loops, or subroutines.
DIV 0 ERROR A zero divisor has occured in an expression. UNTL ERKOR An UNTIL has occured without a DO.
NO \$ ERROR A NEXT has been encouted without a FOR, or the variable of the NEXT statement is not the same as that of the preceeding $F O R$ statement.
SNTX ERROR Incorrect syntax - see Bacus-Naur.
BUFF OVF ERROR Input buffer length is exceeded.
CHAR ERROR Indicates that a string was not found.
NEXT ERROR Indicates that a NEXT was encounted without a FOR, or the NEXT variable did not match that in the previous FOR statement.

```
Oった1 REM
    THIS IS A PROGRAM TO DEMONSTRATE CERTAIN UNIQUE
    FEATURES OF TCT BASIC
    IT TAKES A NUMBER EETWEEN G AND }999\mathrm{ INCLUSIUE AND
    WHITES IT OUT IN WORDS
555 KEM
5S6 HFM
frls $1="ONE" :REM SET UP A LOOKUP TABLE
Erge s2="lWO " :REM OF KEY WORDS
5,35 $3="]HREE "
ST4r $4="FOUR "
O5S &5=''FIUE*
S665 $6="SIX "
S゙7S 5%="SEUEN "
S'%'s $8="EIGHT "
O%GT &G=`NINE "
な!ST $1S="TEN "
5115 $11="RLEVEN "
ת12T $12="TWELUE "
0135 $13="THIK" :REM ITS EASIER TO PRINT
6145 $14="FOUR" :REM "TEEN" LATER THAN
G5J $15="FIF" :REM REPEATEDLY TYPE 1T NOW
G165 $16='SIX"
な!75 $17='SEUEN"
{18S $18="EIGH"
\195 $19="NINE"
Saなr s,2%="TWEN"
550% PHINT "PLEASE GIUE ME A NUMBER"
S515 DU:INPUT ? A: UNTIL A<IGGF:REM
5515 1F A=S PRINT "LEHO'GOTO 51J:REM
BAD INPUTS
ZERO IS A SPECIAL CASE
552G IF A<lfS GOTO 6S% :REM
    TEST FOR ABSENCE OF
S53% PRINT $INT(A/ISS),"HUNDKED';:REM: "HUNDRED'S" DIGIT
5565 A= MOD(A,1OS)
557S &FA<>S PRINT " AND";
UKOS IF A<2S GOTO TSG :REM TEST FOR AN ABSENSE OF
S055 IF INT(A/IS)=2 PRINT "TWEN";:GOTO 655 :REM "TEN'S" DIGIT
6615 PRINT $INT(A/1F)+15;
S65S PHINT "TY";
S665 A=MOD(A=15)
S75 IF A=S GOTO BGS
S71S PHINT $A;
C7&S IF A>=13 PRINT "TEEN";
585% FRINT"\cdots""
S&15 GUTO 515
```



```
OH15 87 FQ 3F G8 53 E5 FE 98 76 54. SD CC 87 F2 3B F3
```



```
5835 5D B7 FA 3B 1E GEB7 FA 今1 44 1F CC ¢7 E3 CE S7
O&4F E4 F5 2F IC S8 AA F5 85 18 EF F5 4S 1B 2? 3F 87
GSS5 E3 1B 55 GF 67 Cl D& JC CF 67 C1 JF 67C5 84 51
```



```
G875 CC S7 FA CE O7 FB 1F O8 28 45 1F GF ¢7 F9 E7 3r,
```



```
¢&\existsG CF 25 D7 EB E7 C` F1 CA F5 1F 58 28 S7 28 CC 87
C&AL ES E4 2J 15 16 3F G8 53 1B 74 Cl 3B 6F S6 f% C1
C&BE 1A1B GE A7 FA Cl 44 7F EC 87 E% 98 54 3B E7 1B
\varrho&C5 6E A6 S1 1C GEF7 3F GC C3FFA 7B 1B F7 S7 3A 3B
G४DS DS FA 7C 1F G8 28 GFG7 F9 GF 65 D7 CC S7 FB GF
¢8EG 45 D7 CC 57 FA A7 G1 CB EE 17 OF S7 FC E7 1S 1A
S&FC S5 C7 21 1F GA 12 GC S7 EB CF 26 77 LC S7 EG CF
```



```
GY1G 3C SD 87 E8 ?a 68 53 E5 SD 14 E5 3A 14 57 SD 1B
Gみ2¢ 52 SF S7 FJ 1% S4 S7 1D 1B 75 SF 46 78 C2 GF 46
```



```
0955 28 ! ) 87 E8 3F %8 53 G1 E4 22 14 E4 GD 18 55 3F
```



```
Cy%: %2 B4 こ4 2D 1B 79 3F 14 C1 OF 66 9A 3B 6B CS CS
```



```
OYAS GF 66 98 1A 14 3B 2F FA 7C AS 〕1 18 CA 3B 2.3 3B
O9BG 25 F7 S5 18 S2 FY 78 1B 13 A5 5l 3B 111 S2 18 58
GYCS S4 35 3F A2 A5 G1 FA 78 3B GC FY 7C 1B AB G4 35
59DJ 3B 94 G4 2E 1B 95 GF 66 9B B5 52 98 GB 75 f2 87
OYES S1 44 fF 64 35 1F 52 B4 7% 52 5J 5f 5f 5J 1B 71
SGFO 3B 5C 55 [A 3B 6S FY 7C 3F G9 6B %4 45 3B E7 GF
SAFE 66 93 3F 69 69 56 52 GF 66 94 3B 4D FA 79 1B E9
GAIS Ј7 3` 74 S7 3F %S 8A 3B 52 1B OE GF 2A 63 5S Cl
CA2S .14 7F 3F S2 B4 ङ1 9A 73 17 G7 GJ 3B 6E 5C ङ7 F4
GA3S 1C SE 68 3B 66 3B 25 CB 9F 54 S4 CF 66 91 OC G7
SA45 FB CF 66 94 SC S7 F7 CF 66 93 54 2C CC S7 FB S4
GA5S 12 CC 67 FA 1F S8 28 SF Ј7 FD 25 S6 G8 CF 26 97
GA65 FA 7B 17 17 4S BA A4 A4 9E A5 4S 82 AO N6 AB A1
5A75 45 A6 AB 9A AS AC 82 98 AB 9C 9E 4G 45 9C 9E 8E
GABT 9F A4 AB A4 9D 9C 8A A6 A9 54 88 55 88 92 AC 45
GAYF 61 AA YC A8 99 86 95 82 A5 9C BA BJ A9 AG 9C AB
GAAS B1 84 AA BC BC 4F 9E AC 8D GC 57 F4 18 55 5C %7
SABC E7 1B 52 f4 3E G6 S 3F 52 B4 3F 17 D3 Cl 18 7A
GACS E4 58 98 J6 A6 51 1A 61 1B 7S CE 25 77 E4 JD 18
SADS EE E4 7F IC 14F7 E6 6S 98 6S ST 3D 1F GA 12 3F
SAES SS BA 55 G5 CD 57 EB 55 78 1F 14 F3 A8 86 A8 40
SAFS 84 82 A6 92 86 76 45 AE A4 92 AB AB 8A 9C 4S 84
GBCSEB2 74 1A 14 AB 5C 98 9E 9C 8E 5B 4S AB 5C AE 9E
TB1F 9E 98 98 8A A4 58 45 86 5C 84 82 A4 A4 82 AB A8
EB25 5C 1A 14 5S 86 52 4S 62 72 6E 7S 41 45 45 45 75
5B3C S2 55 JA 3F GA 57 CF S7 FD GA FC 3F S8 9C 5C 87
SB4S E& E4 2D 98 58 S4 FS CE 66 92 3F 58 53 5C 87 E8
OB5S CO C's CS CS 3B 3S 18 3% E4 2E 9C 14 Cl 3B EC OC
```

```
ZB6S 67 EO E4 35 9% 54FFY 75 1B 5S 54 GA Al CE 6G 91
5R75 16 &5 54 FS CE 6K 95 55 5A 3B 5B 98 56 3B 33 3B
OBG CA FY 7G 1F SB D5 GC 87 ER E4 3C, 16 E4 39 15 ES,
SBYC 17 3B 73 18 14 54 5A Al SF 577 FD.CF 66 91 5C 87
GBAC E% E4 2E Y8 5E 5% 28 1B 56 3B 57 3F 58 53 F9 61
OBBS 1B 1B 44 GF B5 SC 18 GA DJ DE DS DF CE GK 93 77
GRCS 52 17 75 52 GE 66 93 CE 66 93 86 51 17 GA CA 54
EBDS 15 CS CE 6G 91 EA C2 77 52 3F OB 9C E4 45 9C GD
```



```
OFF GB O5 YC OC 41 44 5F C2 CA BE 3B F1 3B FQ 98 5C
COS 44 GF D2 DR D2 D2 62 CC 57 EA 3B E1 GE S7 FD GE
C15 66 91 C3 5E 6,6 95 E1 18 16 EB ED 98 54 25 C1 1B
GC25 14 19 56 58 E3 A3 94 1B SC C1 AB DC 97 1B 55 87
5C35 66 BB D5 97 S3 GB D6 CF 66 91 %1 CF 66 95 1F GD
SC45 C2 3F SC C3 SC 87 EX E4 45 98 76 1B F2 GF S7 FD
GC55 AT 与甘 CB FA SF 66 9B C2 SF 6% 9C Cl OF 6% 98 1A
C65 55 5F 66 9% 19 55 O7 11.1F SA 12 E4 55 9A 77 C3
SC7S E% C4 1% 13 S4 FS, 52 52 52 52 42 4R GF 51 51 51
CC&J 51 45 5F 61 C1 DH 69 CE G7 FE CD G7 EF 17 2S CC
CCYS 57 F3 55 18 CD S7 F2 CD S7 EB S7 32 SD 87 F2 3F
JCAS 58 S3 E5 SD 98 76 GD 87 F2 F5 FE 14 77 JP 3B FS
SCB:J UE ४7 FZ EY D3 1A 65 19 fA EE 57 EF 1A 5E 19 S3
```



```
GCDJ ¢1 77 ¢ర A5 G5 75 58 52 CF 67 CS S1 CF 47 CS 75
UCES 15 17 SD S7 EB SG FF GE AT ES E4 SD 98 79 S2 61
GCFSIC GD 6E 52 14S1 38 F9 86 53 3F GD 5R GD 87 E5
SDJG ¢7 23 3F L8 53 ¢% 25 3B FA E5 FF 98 75 52 C1 3B
SD15 F2 FY 7C S7 23 3F SC C3 ち7 25 3B FA SC 87 E3 CC
SD2¢ 67 E5 GC 57 E4 EC G7 F3 98 69 5C &7 E3 EC ¢7 F2
```



```
SD4S CC 67 F2 3B F6 1B S3 CS 3B Fl SC 87 E8 CC 87 F2
SD5S E4 5D 14 S7 28 3B E4 S7 32 1B 6D SF ¢7 F2.CF 厅7
SLGS E3 CF S7 E5 GF S7 F3 CF S7 E4 CF 57 E6 17 3B GB
SD75 S7 23 3F O8 53 SD 87 E3 E5 GD 98 76 3B F5 GC 87
SD*f E3 CC &7 E5 E4 FF 14 57 25 3B E8 G7 23 1B GD S7
SDYS 32 3F 17 BF 1B J4 3B FA 3B 97 ED 87 F2 E5 FE 14
GDAS 3B 1D 3B 8D GD 87 F2 3B 16 G4 2G 3F %2 B4 12 15
SDBG 3F SB 53 SC 87 F2 E4 CD 18 5C 3F 厅2 B4 1B 71 1F
GDCS 52 69 3F SA 57 CF O7 FD 3F 11 A3 3F 111 D9 1F TE
EDDG BY SC 57 F4 18 2A C7 28 3F SC C3 5C 87 ES E4 GD
SDES 98 11 3F f8 53 5C 87 E8 3F SE 59 与C 87 E8 CC 57
SDFG FU CS CS 3B EE 55 12 56 58 CD S7 FA CE G7 FB 17
SEST 25 C8 CF CC 57 FD CC 57 F9 G511 56 FF 1B GA 25
5E15 CC S7 FE CC ©7 FC CC 57 FF 54 51 CC 57 F4 CC ©7
```



```
GE4S 1S A4 2F Cl CD S7 E2 1F G8 53 5B FY CC 57 EB 54
GESE G1 C8 F2 17 S8 F7 C8 ED 17 E4 FE 98 G5 57 S9 1F
```



```
SETS 57 FY 54 11 J6 FF 1F 58 7S 25 3F GE 29 3B GC ¢7
GE&S 32 3F S8 53 GC 87 F2 E4 FF 98 76 GD C7 F2 3F S2
GEYF 69 ED 57 F3 3B FY 1F OS BA 3F 58 9C 3F 14 B3 15
SEAS 16 C2 3F OB 53 SC.87 E8 3R F3 1C 5C C3 3F 14 BB
```



```
grCS Fl GD 4f 98 C2 57 G8 GF 2G EF CD 26 97 Fib 78 C9
```



```
JEES 2S C3 CF GK CS CF 67 SJ DB 78 54 G3 CC %7 ER 54
OEFS 3F CC 57 E7 1F GE 68 SC S7 E3 %E S7 E4 1F G% 7S
HFS S5 58 5D C4 4S CD 64 ED SD E4 42 CD 64 E4 59 72
SF1G CD 54 EC 55 58 2G CD 44 F5 59 7B 17 SF 84444 27
}F2S F{ 1B G3 SF B4 44 77 GA 3B 56 CF 54 E6 75 51 5D
SF3S 54 ED ED 54 E4 18 16 59 fE S4 54 55 E4 5G S8 3F
OF4S 11 38 3F 11156 1B 66 54 54 O5 ED 1B 7S 5C O4 EE
GF55 EC O4 E5 19 62 18 54 59 60 1B KC OC 54 EG EF S4
```



```
GFTC 56 1B 1B 77 S1 3B 31 1A S4 3B 3A 1B 11/ CF O4 EF
jFBG 56 56 5E 44 E7 AE 64 FS 94 CE 64 FS 5A 74 1F GF
SFHS FS 75 S1 S5 5J 56 S6 51 SE 44 FS 84 66 Dl BE 64
SFAS E7 94 CE 64 FS 5A 7S 17 66 FA GE 63 FG EE 63 ED
```



```
SFCS CE 64 FS 5A 74 17 ¢7 5B O5 O5 3B 5C 1A S7 3B 65
SFDG 85 66 95 1B 75 8D 54 FB CD %4 FB 54 54 55 ED C6
SFES GF 3F 1F 48 FB 62 3F 11 56 %7 GB 3F 1C 51 FB 7B
```



```
15たち DF 57 G8 GF 44 ED CF E4 46 5B 78 17 CE S4 E2 CC
```



```
1JCS 87 52 E5 58 98 75 Cl S4 FG CC 84 ES 54 99 CD A4
1535 ESS 2S CD A4 ES CC S4 FC 1744FG 98 52 87 51 S3
154G14 3B 5E 3B 21 FB 7A 17 CE S4 E2 CC 54 ES CD 54
1055 E1 55 54 %E 54 E2 75 G1 JE C4 E{ DS CE E4 EG EG
1J65 53 98 75 FY 6E 17 GD A4 ES GE 84 ES 18 OA 84 67
1575 94 IC SE D9 CDE4 ES 17 58 GF EC S4 FC 98 57 56
1J85 FS CE 84 ES 1B 68 CC 54 FC A4 なっ 94 1B 66 %7 85
1595 SE 84 42 26 FG 1B G5 G7GS GE 84 42 77 GB 3F GF
```



```
15BG 18 54 54 F5 1B J1 25 CC 64 EF EE 54 ED 98 5C SC
IJCS 54 E5 84 65 8C 54 EE 94 DI 1B 1E SC S4 EE EC 54
```



```
15ES 54 ED AC 54 E5 94 CE S4 ED CC S4 EE CD S4 FC 75
10F5 51 54 54 55 E4 56 58 3B 3F 5F GF C6 5% 5C 54 54
11%5 55 ED 56 fE 3B 32 FB 76 57 GA 3B 35 %C 54 FB 18
1115 SA A4 SF CC G4FB 3F GF 91 1B 71 FB 6D 1F GFFFS
1125 54 B6 CS 55 S6 8D 44 FS 94 CD 64 FS S4 66 59 75
1135 B5 f1 16 3B SC 3B 1F17 CE 54 E2 CC S4 ES CD O4
114S El S5 54 S6 G2 SE A4 ES 5S CE E4 ES EE 54 E2 98
115」74 75 S1 FY 6E 17 JD A4 ES SE 84 ES 98 JE 84 67
1165 94 98 55 55 %1 CD 54 FC CDE4 ES 17 58 G3 CC O4
11%FFC A4 SS 94 53 72 CC 84 ES 1B 6D SD ST FD SD 46
1180 9% 84 58 C2 57 58 GD 46 97 CE 46 FG FB 78 C9 EC
119517 GB EY 2S CF 66 92 17GB E2 OF 66 92 24 FS CF
llA与 66-92 17 今B D7 87 98 ち6 Ј6 52 C1 51 %3 AD 71 Cl
l1BG C3 CE 44 4G S4 56 CE 44 4S 5A 6E CF S4 47 CC G4
```



```
11DS E& 3F G8 53 E5 GD 14 1B 75 3F GF 23 1B SD 3F GF
```



```
11FS A7 SB CB FA GF 66 93 15 16 CF 66 96 CF 66 91 17
1255 %% &A SA AY 32 5B 8D 52 S1 5B 2F 52 14 SC 4D CC
1215 8E SC E2 52 &1 32 34 4C 49 53 D4 17 BA 52 4F GC
```

	76	E	54	CE	5	32	F	58	55	CE	59	SE	5	5F		
	32	48	43	40	45	41	D2	58	5	34	97	4	45	D7		
	SB	2 F	52	2.4	b2	1 E	S	r	5	32	5	4 C	45	D4		
	52	6 C	32	2 A	BD	93	D5	11	78	S9	SE	SD	D1	32		
	49	D8	SE	32		SF			32	89	49	C6	96	37		
1285	54	48		CE						58	38		55			
	CC		C 5		37				72	5	D1		A4			
	fe		55			3	C 5		C		-					
	SE	52	BD	32	2 A	53					59		58			
12 C 5	CC	8 E	14	DB	SD	D1	32	D3	52		54	55				
12D	09	21	5 D	D1	32	EA	4 E	45	58	D4			SE			
12ES	59	SE	6	8D	93	D3	16	77	CD	D1	G	33	14			
12Fs	11	C 5	E	99	52	2 A	32	2	BD	93	DS	32	2 A	54		
1355	D5	33	SA	53	54	45	D	93	D5	53	C	15	D7	59		
1315	7	11	7B	SD	D1	33	35	A4	93	D5	32	$2 A$	BD	33		
13	C	4 D	17	E	53	2 C	32	2A	A	94	13	. 17	4 C	59		
1335	D1	33	5	55	D2	33	39	49	4	D4		45	A2	59		
1345	4D	33	49	A 4	93	D5	16	F3	53	4D	93	D5	59	76		
	AC	53	39	33	57	BE	53	.	T 5	8 A	59	, E	GD	D1		
	49	4E	55	55	D4	15	95	11	C 5	S	99	53	7 F	5		
	D5	11	78	15	55	33	77	AC	SE	99	53	59	15	5	48	
13	32	2 A	A4	94	13	17	38	53	59	11	33	93	53	54		
1395	14	C9	SE	5	33	A	55	49	55	42	5	C7	55	5		
13A5	\%	34	A3	52	45	CD	11	CC	SD	D1	93	D5	33	B2		
138	D	15	1 E	33	C 7	BC	33	BC	BD	93	D5		25	33		
13Cr)	D	15	24	,	DS	15	1 C	32	2 A	BE		D1	D		
J3D	15	1 A	9	5	15	22	33	DE	AD	9	F	,	98	53	E3	
13 ES	E1	$A B$	93	FB	-	EE	A		FB	1	A	1	D	5	E3	
	,	AD	93	FB	I	A3	11	D			A	D	9	13		58
	AA	94	13	11	A3	1	E	,	$F D$	3	J	A	9	13		A
	11	E3	53	FD	-	99	5	1 B		BF	C	D	c	$2 F$		
	98	D6	34	2 B	A	93	D5		2	A	5	3	3	3	55	C
	15	D5	58	D6	34	41	41	4	D3	32	2	A8	94	24		
	58	D6	54	54	53	49	C	3	2	A8	9	24	$\stackrel{5}{4}$	55	58	D6
	58	6	S 8	6	55	34	62	49	4E	D	32	2 A	AB	94	24	
	9	58	D	3	71	46	52	4	C3	32	2 A	A 8	94	24	16	
	4 9	D6	32	2A	$4 D$	4 F	C4	94	88	1	A3	11	-	1	91	
	E8	58	D6	11	A3	11	E	58	D6	32	2	A8			3	
	AC	93	D5	32	2 A	A9	58	D6	32	58	53	49	5	C5		
	GE	78	GD	D1	32	2 A	44	55	4D	Dr	17	BB	52	4		D
¢	SD	D1	D6	E4	41	16	E4	5A	15	E	17	A6	41	D2	D2	S
	17	SF	57	FD	A7	38	CB	FA	17	$3 F$	58	9	SD	87	E8	$3 F$
	58	53	E5	SD	14	4	3F	¢2	B4	1 B	71	5	$\bigcirc 7$	E	18	55
	57	17	$1 F$	TA	12	64	51	CC	${ }_{6} 7$	F	S_{5}	${ }_{5} 7$	F2	SD	07	
	CC	57	E8	CD	57	E9	17	${ }_{3} 7$	25	$3 F$	SA	1 B	BB	A 5	1 B	17
	SC	57	EB	TD	07	C ${ }^{5}$	C8	FC	C9	F7	50	57	E ${ }^{\prime}$	SD	$J 7$	C
	C8	FC	C9	F7	17	3B	69	$1 F$	CA	A9	A 4	¢ 3	A 4	61	A 4	51
152 s	A4	51	A4	1	44	$\checkmark 7$	CC	57	E3	$3 F$	11	A3	3 F	1	DE	5
	57	FD	A5	. 8	C9	FA	J 7	14	D	66	9 B	18	56	J 1		9A
1545	18	52	53	53	4B	E1	CF	¢7	F6	$1 F$	38	D6	SB	F9	15	
	11	CC	$1 F$	SD	D1	5 F	57	F4	1 C	SA	15	GF	57	FF	\%	25
1565	9E	58	Fl	${ }_{3} \mathrm{C}$	57	E8	CF	26	57	SC	57	E9	CF	26	57	
5\%	EB	17	\% ${ }^{\text {B }}$	E8	93	55	57	2 D	$1 F$	5 A	12	5 C	57	F6	8	

```
15&5 GF 66 57 C8 F5 GF 66 56 C8 DA 17 A7 S2 CB CD 17
1595 3F SO 9C CC S7 E7 1F G8 53 77 G2 SF S7 FD SF 66
```



```
15135 55 C2 44 7F B3 C3 F6 8S 98 OE GF 66 93 44 FS CF
15CS 66 93 87 ¢1 46%FF 86 今1. 2G E6 S5 18 S5 CF 26 92
15DG DA 77 75 52 17 A4 S1 A4 S1 A4 13 DS DS DS GF S7
15ES FD C2 S5 S8 SE 35 EE CF 26 97FO 78 CB F1 17 G5
```



```
1615 CB F6 3F 15 99 3F 11 A3 1F|11 DE S5 GB SF 26 BF
```



```
1635 B4 S2 1C %9 B9 1F G9 AG 33 A9 A4 94 13 32 2A BD
1645, 32 2A A4 94 131766 GF O7FE E7 4C 9E S8 Fl GE
1055 S7 FD A6 15 CA FA A6 59 SE 66 98 CF 26 S7 SC S7
1665 E& CF 26 J7 SC S7 EY CF 26 S7 55 15 SE 26 AS CF
1675,26 S7 F9 78 CB D2 17 SB CF SE S7 F6 98 GB SF 65
1685FF6 CB DC EFF65F7 C8 DD 17 A7 13 1B 67 SD S7 FD
1095 SE S7 FE 98 S5 S7 35 1F GA 12 SE 65 F5 ED 66 97
16AS 9C 16 95 CC S7F6 3F SE BF O7 SB SA E4 SE 25 FF
1GBS CD 26 97 FB 78 C9 D7 3F 11 A3 3F 11 D9 SA E5 59
16CS CD ST S% GD 26 8F CE 26 EF FB 78 CS CS GA C2 CD
1GDS S7 FD S7 S8 GE 25 F7 CD 26 8F FB 78 17 3F SE 27
16EL &7 32 SD 87 F2 3F 58 53 E5 FE 98 76 3F GC 97 GD
16F5, %7 EB 17. 3F GC 4D 3B 65 18 55 G7 31 1F GA 12 3B
17G5E5 3B E3 SC 87 F2 E4 SD 14 3F S2 B4 1B 73 ک7 28
1715 66 SS GD 87 E8 3F S8 53 S1 CE 25 77 E4 SD IC S9
1725, 64 E4 22 98 6D S4 GD CE 65 77 3F 15 SS 3F 16 DD
1735 3F GA E2 3F GC E2 1B F3 3F 15 15 3F GC 4D 1B 6D
1745 3B FA 3B EA 9C 16 FA G7 32 3F %88 53 3B FC FC 87
175S FR CD 25 77 E4 SD 98 74 3B D1 3B 5F SF S7 F4 15
1765 S4 GD CC 87 E8 17 3B D4 3B C1 3B C2 3F 14 EA 3F
177S SC 4D 3F 16 DD 3B 1E 3B 1C 2S CC S7 F6 SD 87 F2
178!, ED 87 E8 98 58 3B GE E5 GD 98 72 C9 EE 3F 15 SS
1795 1F O8 DG CS CSGT 32 3F 58 53 ¢7 28 1B FA 17 SC
l/ASG7 FD B4 58 C3 84 58 C2 3F 16 1B 3F 16 S% 53 84
17BC 58 CC ¢7 FD C2 84 58 C3 1B EF 25 CC 57 F6 17 S8
17CSFB 98 53 1F GS 8A G4 SD 3F S2 B4 55 SS 3F 52 A8
```



```
17ES F7 3F S2 AB 3B F9 44 8S 51 61 C1 FA 74 3B:F3 45
17F5%F
```

