
CONTENTS

S'YNTACTIC 	 AND i AC F. US -NA UR 	M
ENT ERING CU\ s..‘ IA NpS A r 	'I

TCT P,A SIC 	OR Y MA P
STRING !IA Nr.)1.1 NCI CA PA. 1 ;T_ LI T1 1::S
EX PR ESS1ONS

COMMAND MODE
NEW

LEAR:
LIST
RUN
SIZE
DUMP

EXECUTION MODE

LET
GOTO
IF
PRINT
FIX
INiDUT
GOSUI3
RETURN
FOR
NEXT
DO
UNTIL
REM
STOP
PIPBUG

FUNCTIONS

COM1)LETE BACKUS-NAUR
FLOW CHART REPRESENTATION OF AN EXPRESSION
SAMPLE PROGRAM
LISTING

TCT BASIC

TAPE DETAILS.

SIDE A:

SIDE B:

TCT BASIC
110 baud binary format with
loader in PIPBUG format.

TCT BASIC OPTIONS
1. RaNDom
110 baUd PIPBUG format.
2. SINe
110 baud pirbug format.

NOTE 	THIS TAPE or ICT cAsic IS FULLY COPYRIGHT AND MAY
NOT CE COPIED wiThour EXPRESS CONSENT OF THE
AUTHORS.

SYNTAC,TIC D1 ScRI1jlpNS AND BAC.1-,1..-;-1. \!..P.i.:1:.

The 'BaCcus-Naur' form of syntactic description is used
throughout this nianual to define the legal construction of

statements.

In Iiacicus-Naur form syntactic constructs are denoted by .English
words enclosed in ' <' and '>' signs. These words are chosen
to suggest the nature and meaning of the construct v:hich they
reprepent. For example, '<expression?' is used often and denotes
any legal combination of arithmetic variables and operators (addition,

multiplication, etc).

The vertical slash 'I' is used to separate mutually exclusive
possibilities and nay be read as 'or'. For example

expression? ::=(<expression>) / <expression>
means that an expression may be another expression enclosed in brackets
or just another expression. (This foirm of recursive definition is common
in the description of 'high level languages'.)

Finally there exists the symbol '::=1 which may be read as 'is
defined as being', or just 'is'. An example is given above.

These three basic symbols are used to describe the syntax of
statements and statement construction.

Those symbols which appear on their own (i. e. are not enclosed
by '<' and ') are actual characters and symbols which appear
in the text which is being described. The simplest example of
this is the Backus-Maur of the 'RETURN statement'

<return statement>::= RETURN

ENT F,R1N C,0,1'...I.A -POTIS AND - 	T.

All input to the Basic interpreter is made through an inbuilt sirs ;le
line text editor . Whilst the user is in communication v:ith the editor'
certain control cha7 actors are reserved for 'special functions.
These characters are: 	CR 	Used to delimit the current line

of input.
BS 	Deletes one character from the

end of the current line.
DEL 	Deletes the entire line which has been

input up to that point and re-prompts.

When CR is pressed control is passed to the rest of the interpreter.
At this stage there are two possibilities, that the line in entered into
the users program file, or it is interpreted as a command and
executed immediately. The criteria which determines which of
these is performed 	whether or not a number preceeds the statements
on a line.

In general if an input line starts with a number it will be interpreted
as a line to be entered into the user's program file at the appropriate
point. If an input line has no recognisable number preceeding it
then it will be executed immediately, irrespective of whether it
is a command or an executable statement.

To delete a line from the program file the line's number should be
typed followed by a CR.

SCRATCIIPAD RAM

STRING FILE

USER'S PROGRAM

SPARE RAM

	 END OF RAM

STIZINGIIANDI,I7\:(; CA T',̂ , 	y,S

The manner in which Airings are l i lndled in TCT BASIC is sonewhat
different from that of most other BASICS and so will be discussed
in some detail,

In mo;: implementations of the BASIC language strings are identified
by a letter of the alphabet with either a leading or trailing '$ sign.
This construct has severe limitations in that there is only a very
limited number of strings available, and more importantly, strings'
cannot be referenced by some calculation, which also limits the
number of stings which can be effectively handled.

To overcome this limitation it was decided to identify strings with
four digit numbers, and allow expressions to be used to determine
these numbers in all string handling operations. These string
identifying numbers obey all the rules associated with line numbers,
i.e. they must be greater than zero and less than 10000:

Truncation of string identifying numbers is performed in all
operations.

In this manner strings may be handled in volume and with ease,
yet there are of course limitations imposed by the physical size
of the BASIC interpreter. These points are noted below.

1) Strings may not be 'merged' or in any way 'put together'
or 'taken apart'. I. e. constructs of the form $l=$24$3
are not allowed. (This is perhaps the only major limitation.)

2) The only comparisons which may be made between strings
are those of equality or inequality, and these comparisons must be made in
terms of string identifyers, not literals enclosed in quote
marks.

3) Due to the large number of possible strings it is of course
necessary to release memory space occupied by a null string
(i.e. an empty string,, which all strings are before they are assigned

a value.) completely. • For this reason it is impossible to operate
on a null string. However it is possible to detect that a string is emptl,
by the provision that it returns a true value for all comparisons.
This is a useful facility when dealing with user input where the
response to a request is often just a carriage return.

Strings are stored in memory from the end of the program text
onwards through available RAM. It is the user's responsibility to ensure
that the length of the file does not exceed the machines memory limit.

E C (7)M M:1. NI) 'DUMP'

The DUMP -command is the means by which an existing BASIC
program may be recorded for laiter loading and use.

The form of the DUMP statement is the word DUMP followed
by an optional line number.

The DUMP ccmmand is ftindamentaly the same as the LIST command
except that no line feed it performed at the end of each listztti line

and a delay is inserted instead. This allows a program listed in this
manner to simply be played back from the tape recorder and inserted
as text in the program file.

The proceeaure for using this command is:
1) Type the word 'DUMP' followed by a line number if desired.

2) Set the tape recorder to 'RECORD'.

3) Type carriage return.
4) when dumping is completed stop the tape recorder.

To reload a recorded program:
Merely play the tape back whilst in command mode.
The interpreter will initialy respond with a syntax error,
this should however be ignored and is only due to an

unavoidable 'hash' on the tape.

We are sorry to say that some tapes posses errors effecting
the execution of the DUMP command, if you have one of these
tapes the fault may be remedied by performing the the following
operations in PIPBUG.
*A17In

17D3 3F 77
17D4 02 10
17D5 86 06
17D6 E4 08
17D7 OD 12
17D8 14 lA
17D9 3F 7D
17DA 02 3F
17DB B4 02
17DC 77 AD
17DD 10 Cl
17DE 02 3F
17DF 75 17
17E0 10 Frl
17E1 17 3F

:ri Jr, 	 !NEW'

The typing of the word NEW followed by a carriage return eliminates
all trace of any prograM file which may have been present, reEets
all internal stacks and pointers and clears all variables including
st rings.

If the BASIC: interpreter is entered at the HEX address 0800 then

a NEW command is executed automaticaly. However if it is entered
at 030A then the program file will be unaltered (although variables
will be cleared).

If the NEW command is ever entered accidentally your program
file may be recovered by exiting the BASIC interpreter and changeing
the locations starting at HEX 1801 to:

1801 . 	Tl.e high order I3CD code of the first line number.
1802 	The low order BCD code of the first line number.
1803 	The ASCII code of the first character Of your text.
1804 	The ASCII code of the second character of your text.

Then entering the ?ASIC interpreter at OgOA.

THE COMMAND 'CLEAR'

The CLEAR command sets all variables to zero, and eliminates
all strings.

It is implemented by typing the word CLEAR followed by a
carriage return.

THE COMMAND 'LIST'

The LIST command is the means by which the program file may be

inspzcted, in part or whole.

The form of the LIST command is the word LIST followed by a
carriage return, or the word LIST followed by a line number.
The first form will start listing the program file from the first
line, while the second form will start from that line with a line number
greater than or equal to the specified number.

To suspend the listing process hold down the 'break' key, if
the 'break' key is not implemented or connected on your keyboard
then hold down 'rept' (repeat) and 'space', listing should cease
within a few lines.

T_HE COMMAND 'RUN'

The PUN command causes the interpreter to enter 'execution mode'
and begin execution of the program stored in the pre ,ram file at
that line which po3esses the lowest line number.

The RUN command is implemented by typing RUN followed by a
carriage return.

After a RUN command has been executed the user's BASIC program
will begin execution and continue until a STOP command or an error

is encounted, or the 'break' hey is depressed.

If it is deSired to start program execution at some point other than the
first line then a GOTO statement may be used. This will
autornaticaly put the interpreter in 'execution mode' and begin
execution from the line specified. (c.f. 'THE GOTO STATEMENT')

THE COMMAND 'SIZE'

The SIZE command returns the HEX values of the start of the program
file and the end for the user to check on the a vailable RAM left.
(NOTE: This includes that area of RAM tad:en up with strings.)

The form of the SIZE statement is simply the word SIZE followed
by a carriage return.

The response is:
	

XXXX
YYYY

Where XXXX is the address of the first byte of your file
and 	YYYY is the address of the last byte of your file

(On this version of TCT BASIC XXXX will of course always be 1800.)

,ET, OR ASS)(7;NIA i;',1\17 S`TA71:7,141::INIT

The LET statement is the basic operational statement of the 1311SIC
langusge. It is by means of this statement that data is transferred and
transformed between variables, whether they be numeric variables or
literal strings.

The fundamental form of the LET statement is the word LET (optional),
followed by either a letter (for a numeric variable), o; a '$' followed by
any legal numeric expression (for a literal or 'string' variable.) This variable
identifier is followed by an '=' , which is in turn followed by any legal
numeric expression or a '$' followed by any legal numeric expression
or a simple string.

This construct , when executed, will place the value derived from the
right hand side into the variable specified on the left band side. To make

this aspect clearer it is best read 'is assigned the value of in place
of the 1 =' sign.

IN T E 1) The types of the expressions or variables on each side of the
'=' should agree: that is if the right hand side returns a numeric value
then the left hand side should be a numeric variable, and if the
right hand side is a string, then the left hand side should be
a st ring identifier (i.e. have '$' prefix).

2,) The initial LET keyword is entirely optional and may be deleted
if desired.

3) The values of the variables on the right of the '=' remain
unchanged unless they apear on the left o f the statement.

The syntax of the LET statement may be sumarised as follows:

<let statement> ::= LET <assignement statement.) / <assignment statement>
<*ascignement statement> 	<variable) 7:: <expression> / <string identifier> =

<string>
estring)::::: <simple string> / (string identifier>

EXAMPLES OF THE LET STATEMENT

LET A=127*3
C=VAPPR*I.
$1="YES"
SA*5=SINT(B/27)

The following are illegal uses of the LET statement due to mixed types:

A="YES"
LET $1=24PI*R*R

THE 'GOTO' STATE '!;:NT

The GoTo statement is the means by which program flow is broken
and resumed at another point.

The form of the GOTO statement is GOTO <expression>. Where the
value returned by the expression must he a number greater than r,ero
and less than 10000 (truncation is automatic).

When executed.program flow will be resumed at the begining of the line
which has a number corresponding to the value of the expression, if

no such line exists a 'NOGO ERROR' will result.

VDTP, 1) A space may be inserted between the GO and the TO, that is
the CCTO statement may read CO T0<expressiorrx

2) The value of the expression need not be an integer, it will be
truncated automatically.

The syntax of the GOTO statement is,

(got() statement)::= GOTO <expression>

EXAMPLES OF THE 'cOTO' STATEMENT

GOTO 120
GOTO Ai B*10
GO TO 970

EXECUTION MODE

The following pages describe those commands which may be executed
within a program. Most of these commands or 'statements' may also
be executed in command mode. However no commands are executable

in execution mode (That is those commands which appear on the
preceeding pages may not appear in a program.)

There are certain executable statements which may not be executed
in command mode, these are:

INPUT
DO
UNTIL
FOR
NEXT

:i :' 'Jr' STATYNIENT

The IF statement is the mechanism by which desicions are made
. within a BASIC program, and different action to ken depending on
some condition.

The fundamental form of the IF statement is the word IF followed
by ither a string identifier or an expression. This is followed by
a 'relational operator' which is in turn followed by another string
identifi er or expression. This is followed by any collection
of statements on the same line.

If expressions were used in the IF statement, then upon execution
these will be evaluated to two single numbers and compared in
relation to the given'relational operator', or if strings were used
they will be compared letter for letter.
If the resultant 'relational expression' is true, then the rest of the
line will be executed, however if it is false then control will
immediately pass to the next line.

NO11E. 1) Permissible relational operators for expressions are:
= equal to
<> not equal to
<= less than or equal to
> =greater than or equal to
< less than
> greater than

Permissible relational operators for strings are:
= equal to

2) TCT BASIC's implementation of the IF statement is
non-standard, strictly only a GOTO statement or the word
THEN followed by a line number should follow the IF statement.

3) The word THEN may be placed between an IF statement

and its succeeding statement, yet this has no effect on its

operation.

4) Simple strings may not be compared directly, i.e. all
string comparisons must be made between predefined strings
denoted by string identifiers.

The syntax of the IF statement is:

<if statement> ::= IF <if value> <relational operator> 	value>

<if terminator>
<if value>::= <string identifier> / <expression.>
<relational operator> ::= =/<so /=</ >=/< / >
<if terminator?::=<> / THEN

;11-I E

The PRINT statement is the means by which output is obt:: n ed from
a BASIC program while it is executing; output of both the numeric values
of expressions or literal strings may be obtained.

The form of the. PRINT statement is the word PRINT which may be abreviated
to PR in most circumstances, followed by a list of items to be printed.
Separate items in the list are separated by commas and may be either
strings or expressions. Expressions are printed as a numeric value
the format of which may be controlled by the FIX statement (c.f.), while
strings are reproduced verbatim less their leading and trailing quote marks.
Normally a carriage return line feed is transmitted at the end of each
PRINT statement. However this may be supressed if desired by the inclusion
of a semicolon after the last item of the 'print list'.

NOTE 1) There is one circumstance in which the abbreviation PR may not
be used. This is something of the form PRINT INT(<expression>),
for if the abbreviated form is used this becomes
PR INT(e expression>), which will cause the value of the expression
to be printed, not the integer part as would happen in the first
instance. (However anything of the form PR "HELLO", INT(A /PI)
is still legal.)

2) If a trailing ';' is used then the next PRINT statement will print
on the same line.

3) The word PRINT by itself will not cause a line to be fed as in
some BASICS: that is a PRINT statement without a print list is
not allowed and the form PR" should be used instead.

4) There is no mechanism for the inclusion of " marks to appear
in strings and therefore they may not be printed, this is true of
all special symbols except carriage return, which may be printed
indirectly.

The syntax of the PRINT statement may be summarised as followes:

(print statement>::= PRINT (print list> <print terminator> / PR <print list>
(print terminator>

<print list>::= <print item> / <print list> 41:Tint item>
<print item) ::= <expression> / <string>
<print terminator>::=<> / ;

EXAMPLES OF THE PRINT STATEMENT

PRINT "YOUR CURRENT POSITION IS ", X, Y, "AND VELOCITY ", V
PR RND(R)
'PR $I, A, $4;

THE 'FIX STA TI.:1117.,,NT

The FIX statement .is the leans by which the for mat of numeric output
may be controlled:

The form of the FIX statement is the word FIX followed by a single
digit or the letter 'S' .

Execution of the RIX statement merely sets a flag as to the format of
numeric output, it has no effect on the internal calculations or manipulations

of numbers at all. When a PRINT statement is executed and a number
is to be print ed, this flag is inspected, if a fix of .'S' was specified
the number is printed in scientific notation: that is, as a ten digit
number followed by an 'E' and then the power. of ten to which it should be
raised. If a digit was specified then the number will be printed in floating
point format with the specified number of decimal places displayed;
if the number is too large or too small to represent in floating point
format then it will be printed in scientific format automatically.

NOTE 1) NO rounding is performed on the printing of floating point numbers.

The syntax of the FIX statement is,

<fix statement>:::: FIX!fix)
(fix>::=0/1/ 2 / 3 /4/5/ 6 / 7 /8/9/S

EXAMPLES OF THE 'FIXI§TATEMENT

FIX 1
	

result of a subsequent 'PR 127.89' is 	127,8

FIX S
	

result of a subsequent 'PR 127.89s is 0. 1278900000E 03

FIX 9
	

result of a subsequent 'PR 127.89' is 127.890000000

T171:1 'INPUT' S'l'ATE'v117,-NT

The 'INPUT' statement is the means by which an executing BASIC
program may receive information from the operator. Input may be
in the form of an expression (for a numeric variable) or a string.

The form of the input statement is the word INPUT followed by a single
character, this character is the 'prompt' which will be printed when
the statement'is executed. This prompt character 	followed by an 'input
list' which may be composed of single letter variables or string identifiers
separated by commas.

Upon execution; the prompt character will be printed and the desired
input should be entered from the keyboard or tape. The values which are
typed in are assigned to the corresponding variable in the variable
list (input list); the typed values must, of course , agree in type with
the variables in the list. Numeric responses (if more than one)
should be separated by spaces or commas. String, or literal variables,
should be separated by carriage return.

MOTE 1) Expressions are allowable in place of a number when a numeric-
variable is being assigned a value. That is it would be legal to
respond with 'PI/ 2' to the statement 'INPUT ? A'

2) It should be remembered that if a numeric variable appears
in the input list then the response must be an expression, and
if a string is required then the response must be a string also.

3) When responding to an 'INPUT' statement 'backspace' and
'delete' perform the same function as when entering normal
coinmands and text.

The syntax of the INPUT statement is;

<input statement> ::= INPUT <prompt> <input list>
<input list> ::= <input item> / <input list> , <input item>
<input item> ::= <string identifier> kvariable>
<prompt> ::= anon special character>

EXAMPLES OF THE 'INPUT' STATEMENT

INPUT ?A, B, C 	 a valid response would be, ?123.3,4, 4.5E-20

INPUT *$N 	 a valid response would be, *HI THERE

.The 60SUB statement is the mechanism by which subroot;nes may he

called in a BASIC program.

The form of the GOSUB statement is 	 r3OSU13 expression.

Where the value of the expression is a nun-iber greater than zero

and less than 10000 (truncation is automatic).

When executed program flow will he temporarily diverted to the
line with the number returned by the expression. Upon 	encountering

a RETURN statement program flow will be resumed from the

line following the line where the last GOSUB appeared. If subroutines
are nested too deeply a 'NST ERROR' will result. If the line number

specified in the expression does not correspond to an actual line

a 'NOGG, ERROR' will re suit.

The syntax of the GOSUB statement is;

<gosub statement>::= GOSUB<expression>

EXAMPLES OF THE 'GOSUB' STATEMENT

GOSUB 1000
GOSUB INT(N/RND(R))

THE 'RETURN' STATEMENT

The RETURN statement is the means by which control is reverted to
some main program after a GOStql has been executed.

The form of the RETURN statement,is merely the word RETURN.

When executed3 control will pass to the line after the line on which
the last GOSUB occured. If a RETURN is encountered by a program
and no GOSUB has been executed corresponding to it (i. e. the program
is at zero subroutine level) a 'RTN ERROR' will result.

NOTE 1) A RETURN statement must be the last statement on a line,
for all statements after it will be ignored due to the fact that
program flow has been resumed at another point.

The syntax of the RETURN statement is ;

RETURN

EXAMPLE OF THE RETURN AND GOSUB STATEMENTS:

100 GOSUB 500

500 PRINT "PLEASE ANSWER ONLY 'YES' OR 'NO' "
510 RETURN

THE 'FOR' STATEMENT

The FOR statement is the standatbri method of creating loops in BASIC.
A FOR NEXT loop, as it is called, will repeatedly execute a set of

BASIC statements while incrementing a specified variable by a specified
amount, until that variable reaches, or exceeds, a particular value.

The form of the FOR statement is the word FOR followed by a
numeric variable (the 'for-variable') this is in turn followed by 1 ='

then an expression (the 'start value') followed by the word TO
then a second expression (the 'finish value') . After this an optional

'st ep' may be specified by the word STEP and an expression (the'step value').

When executed the 'for-variable is set to the 'start value' and control
is passed to the susequent set of statements. When the corresponding
NEXT statement is reached the'for-variable'is incremented by the'step
value'(if no step value was specified it is assumed to be 1), and

compared to the'finish value'. If the'for variable' is greater than or
equal to the'finish value'control passes to the next statement.

If the l for-variablel is less than the'finish value'a GOTO is executed to

the stat ement after the FOR statement.
As a result if a construct of the form FOR I=1 TO N

any collection of statements
NEXT I

is used then the collection of statements will be executed N times.

NOTE 1) Fractional'step values'are allowed, yet if recurring decimals
are used it should be remembe zed that they do not return an
exact value.

2) It is not permissable to have a'final valueless than the 'start
value'or a negative 'step value'.

3) FOR loops may only be nested 4 levels deep else a 'NST ERROR'

will result.

4) FOR loops are the fastest method of performing recursive

operations in TCT BASIC.

5) 'Offset' nesting of FOR loops is of course not allowed, i. e.
The first NEXT after a particular FOR must match that FOR.

The syntax of the FOR statement is;

for statement> ::= !simple for)/ ?simple for> <step>
4simple for> ::= FOR<numeric variable>= <expressiun>T0 1 expression>

'step): :: STEP <expre.ssinn>

(FOR EXAMPLES SEE 'THE NEXT STA TEMENT')

..' 	FXTs STA 	F.: .1.

The NEXT statement is the loop dCimeter corresponding to the FOR
stat ement.

The form of the NEXT s•atement is the word NEXT followed by
the same variable as was specified in the last FOR statement.
If a different variable is given a 'NXT ERROR' will result.

For a description of the effect of the NEXT statement see the FOR statement.

NOTE 1) A 'NXT ERROR' will result if a NEXT is encounted
before a corresponding FOR statement.

The syntax for the NEXT statement is;

next statement> ;;:z NEXT <for variable>

EXAMPLES OF THE FOR AND NEXT STATEMENTS

FOR I=1 TO 10
PRINT ""
NEXT I

FOR A=1 TO INT(RND(RYN): PRINT "JUST ONCE MORE": NEXT A

FOR N=0.0 'ITO 25 S rEP 2
M=M+N
PRINT M
NEXT N

-THE 'DO' STATEMENT

The DO statement is a non standard provision of TCT BASIC
for the construction of loops. The DO UNTIL construct is in
fact identical to the REPEAT UNTIL coz.struct found in PASCAL.
The DO statement is used when it is unl:n3wn how many times
a particular operation is to be performed (unlike the FOR
statement where it is necessary to know this at the loops comencment).

The form of the DO statement is simply the word DO followed by
any group of statements.

When executed, no immediate action is taken which has any effect
on the users program, the address in text of the DO statement
is merely stored on an internal stack for reference by the next
UNTIL statement. (See 'THE UNTIL STATEMENTt for a description
of the operation of a DO-UNTIL loop.)

NOTE 1) A DO statement need not be the last statement on a line.

2) DO loops are non-standard BASIC and bear no relation
to the DO loops of FORTRAN, yet are similar to the
REPEAT loops of PASCAL.

The syntax of the DO statement is;

do statement>::= DO

(FOR EXAMPLES SEE 'THE UNTIL STATEMENT'.)

THE 'UNTIL' STATEMENT

The UNTIL statement is the loop delimiter co r .41 	ling to
the DO statement.

-The form of the UNTIL statement is the Word 	 followed by
any relational expression (for an explanation of relational expressions
see the IF statement:)

The effect of a DO UNTIL loop is to repeat the set of statements
between the 'DO' and the 'UNTIL' repeatedly until the relational
expression after the 'UNTIL' returns a true value.

NOTE 1) The statements between the 'DO' and the 'UNTIL'
will always executed at least once.

The syntax of the UNTIL statement is:

until statement ::= UNTIL relational expression

EXAMPLES OF THE DO AND UNTIL STATEMENTS

DO
A=A+1
UNTIL $A-41000

DO :INPUT ? A UNTIL A< 25

THE 'REM' STATEMENT

The REM statement is the means of inserting documentation
into a BASIC program.

The 'form of the REM statement is the word REM followed by
any string of characters.

The REM statement is ignored completely during execution of
a program.

THE 'STOP' STATEMENT

The STOP statement is used to terminate an executing Basic
program.

The for m of the STOP statement is the word STOP followed
by any string of characters.

When this statement is executed the string of characters following
the word STOP is printed out and the interpreter returns to command
mode.

THE 'PIPBUG' STATEMENT

The PIPBUG statement is used to return control to tic Philips
monitor program 'PIPBUG' or any other program located at
0000.

The form of the PIPBUG statement is simply the word 'PIPBUG'.

FUNCTIONS

There are fotir inbuilt functions in TCT BASIC. These are:

ABS 	 Returns the absolute value of its
argument

MOD. 	 Calculates A*FRAC(B/A) whe re
'A' is the first argument and '13' is
the second.

INT 	 Returns the integer portion of its argument
FRAC 	 Returns the fractional portion of its

argument.

The arguments to the functions are listed within brackets after
the function name and separated by commas.

Two optional functions are available (RND and SIN) for details
of their operation see the sheet supplied with the tape of TCT
BASIC.

While on certain other tapes FRAC may not work correctly until
the following is performed.
*A161A
161A D9 DE

To implement RND and SIN the relevant section of the tape
must be loaded.

SIN(A) will return the sin of A
The function will only return true
value if the number is between
plus 'and minus pi.

RND(G) will randomize the variable and return
the number.

BACUS NAUR

<basic program> ::= <basic line> / <basic program> <basic line>
<basic line> ::= <sequence number> <basic statements> CARRIAGE RETURN
<sequence number) ::= NUMBER
<basic statements> ::= <basic statement> / <basic statements> : <basic statement>
<basic statement) ::= <let statement> / (fix statement> / <if statement) I <until statement) / <do statement)

< goto statement> / 'gosub statement> / <return statement> / <next statement) /
<for statement) / <print statement) / <input statement> / <stop statement> /
<machine statement) / <rem statement)

<let statement) ::= LET <assigni-nent statement> / <assignment statement)
<assignment statement> ::= <variable> = <expression> / <string identifier> = <string>
<fix statements ::= FIX <fix>
<fix> :: (digit) S
(if statement> ::= IF <relational expression> <if terminator> <basic statements)
cif terminator) ::= <> / THEN
<until statement) :: = UNTIL <relational expression>
<relational expression> ::= <string relation> / <expression> <relational operator> <expression>
<relational operator) ::= <>!=/<=/>=/</>
(string relation.) ::= <string identifier> = <string identifier>
<do statement> ::= DO
<gotot statement) ::= GOTO <expression>
<,gosub statement> ::= GOSUB <expression)
(return statement> ::= RETURN
<next statement) ::= NEXT <variable>
<for statement> ::= FOR <variable> = <expr ession> TO <expression>oteP)
<step> ::= <> / STEP <expression>
<print statement> ::= PRINT <print list> <print terminator) / PR <print list> <print terminator>
<print list> ::= <print item> / <print list>, <print item>
<print item> ::= <expression> / <string>
<print terminator> ::=<) /
<input statement> ::= INPUT <prompt> <input list>
<input list> ::= <input item> / <input list> , <input item>
tin?ut item> ::= <string identifier> / <variable>
<prompt> 	<non-special character>

(stop statement) ::= STOP (comment)
crem statement) ::= REM (comment>
(comment> ::= / (character list>
<machine statement) ::= PIPBUG
(expression> ::= ((expression>) / (expression <operator> <expression> / <value identifier>
<value identifier> ::= <number> / <variable identifier> / <function> / (constant>
(function> ::= (function identifier> (<expression list>)
<expression list> ::= <expression> / <expression> , (expression list>
<operator> ::= +/-/*/,'
<variable identifier> ::= A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z
<function identifier> ::= ABS/MOD/INT/FRAC/ <optional function>
<optional function> ::= RND/SIN
(constant> ::= PI
<number> ::= <decimal part> / cdecinial part> <exponent>
<decimal part> ::= <integer> / <integer> . <integer> / . (integer> <integer> .
<integer> 	<digit> / <integer> <digit>
<digit> ::= 0/ 1 / 2/3/4/ 5/6/7/8/9
<exponent> ::= E <integer> / E (sign>dnteger>
<sign> ::= +/-
<string> ::= <simple string> / <string identifier>
<string identifier> ::= $ <expression>
<simple string> 	" <character list>
<character list> ::= <non special character> / <character list> <non special character>
-{non special character> ::= <any ASCII character except CR " DEL BS >

FLOW CHART REPRESENTATION OF THE SYNTAX OF AN EXPRESSION

expression

term

term

factor

expression A

factor

unsigned number

variable

function identifier

expression

digi

digit digit

FLOW CHART REPRESENTATION OF THE SYNTAX OF AN UNSIGNED NUMBER

ERROR MESSAGES

Line numbers given are those at which the error is detected.

STP ERROR

STMT ERROR

VALU ERROR

NO " ERROR
NOGO ERROR
RTRN ERROR
NEST ERROR

DIV 0 ERROR
UNTL ERROR
NO $ ERROR

SNTX ERROR

No. STOP on the end of the program. Line
number given 	the line number of the last line
executed.
Cha rar ter(s) remaining after the logical end
of statement.
Computed value of an expression is out of range
for a function or an overflow has occured.
A string definition has no " to terminate it.
Line number evaluated does not exist.
A RETURN has been encounted without a GOSUB.
Too many pending opperations in an arithmetic
expression or too many nested FOR-NEXT or
DO-UNTIL loops, or subroutines.
A zero divisor has occured in an expression.
An UNTIL has occured without a DO.
A NEXT has been encouted without a FOR, or
the variable of the NEXT statement is not the
same as that of the preceeding FOR statement.
Incorrect syntax - see Bacus-Naur.

BUFF OVF ERROR Input buffer length is exceeded.

CHAR ERROR
	

Indicates that a string was not found.
NEXT ERROR Indicates that a NEXT was encounted without

a FOR, or the NEXT variable did not match
that in the previous FOR statement.

SSS 1 , , REM 	THIS IS A PROGRAM TO DEMONSTRATE CERTAIN UNIQUE
GG52 HEM 	FEATURES OF 1CT BASIC
r,GS3 REM
r_AvA REM 	I T TAKES A NUMBER BETWEEN G AND 999 INCLUSIVE AND
SOS 5 REM 	WHI TES I T OUT IN WORDS
-W.f§ 8FM

S I ="ONE " 	 :REM 	SET UP A LOOKUP TABLE
G525 $2="1 WO 	 :REM 	OF KEY WORDS
GG3S $3="1HREE le

GS45 $4="FOUR "
GG55 5="FI VE
SS6G. $()="514 "
65 7G 7="5EVEN "
SG8S $8="E1GHT "
5595 . $9="N1 NE "
SI SS 1,1S="TEN
GI 1S :$11= -ELEVEN "
51 25 112="TWELVE
5135 $13="THIR" 	 :REM 	ITS EASIER TO PRI NT
C145 $14="FOuR" 	 :REM 	"TEEN" LATER THAN
Si 5S $15="FI F" 	 :REM 	REPEATEDLY TYPE I T NO W
rJr 61.7, $16 "SIX"
51'75 $17="5 EVEN"
5185 $18="EI GH"
5199 $19="NI NE"
5255 $25="TWEN"
5555 PRI NT "PLEASE GI VE ME A NUMBER"
S515 DO: INPUT I A: UNTIL A<1SSS: REM 	I NORE BAD INPUTS
S515 I F A=G 'PRINT "4 ERO"GOTO 51G: REM 	ZERO I S A SPECIAL CASE
S52S:IF A<1SG GOTO 605 	 :REM 	TEST FOR ABSENCE OF
553S PRINT `$INT(A/1SS), "HUNDRED"; : REM: "HUNDRED'S" DI GI T
556S A= MOD(A, 1SG)
S57S I F A< >S. PRINT " AND ";
5655 IF A<2.0 GOTO 7SG 	 :REM 	TEST FOR AN ABSENSE OF
S6G5 I F I NT(A,"1 S) =2 PRINT "TWEN"; : GOTO 655 :REM 	"TEN 'S" DI GI T
561G PRINT SINT(A/ co t Ir.);
5655 PRI NT "TY ";
5665 A= MOD(A, 1S)
575G IF A=S GOTO 8S5
S71 rte, PRINT $A;
5725 I F A>=13 PRINT "TEEN";
SSS PRINT'""''
SESIS GOTO 51G

5855 54 SP CC 18 JJ JJ 54 FE CC 18 51 3F 52 27 57.32 5D
5615 87 F2 3F 58 53 	ES FE 98 76 54,5D CC 87 F2 313 F3
5625 54 FF CC 87 F2 31 5E 25 12 9E 5E-68 S7 3A 38 23
5835 5D 87 FA 36 1E 52 87 FA 51 44 IF CC 57 E3 CF 57
5845 E4 F5 25 IC 58 AA F5 85 18 2F 15 45 18 22 31 87
5855 23 1B 55 5F 67 Cl D8 5C CF 67 Cl 	GF 67 C5 84 51
5865 CF 67 C5 17 CF 67 Cl 17 28 6A AC 53 6E SO rr

JJ 17
5875 CC 57 FA CE 57 	11.3 IF 58 28 45 IF SF 57 F9 E7 35
5685 IA 55 57 21 IF SA 12 5C 07 FA CF 25 D7 GC 07 FB
5895 CF 25 D7 ,gb E7 C9 Fl CA 15 IF 58 28 57 28 5C 87
5845 68 24 25 15 16 	3F 58 53 1B 74 CI 	313 6F 56 rr

JJ
 01

5865 tA 1B GE A7 FA CI 44 7F EC 87 E8 98 54 38 E7 16
56C5 6E A6 51 1C GE F7 3F GC C3 FA 7B 	16 F7 57 3A 38
56D5 D5 FA 7C IF 58 28 GF 57 F9 5F 65 D7 CC 57 FB 5F
58E5 45 D7 CC 57 FA A7 51 CB FE 17 5F 57 FC E7 15 IA
5815 55 7 21 IF 5A 	12 SC 57 ES CF 26 77 5C 57 E9 CF
5955 26 i7 CB E7 17 C5 C5 C5 CG C5 CG CS CG C5 3F 58
5915)C 5D 87 E8 2F 56 53 25 GD 14 E5 3A 14 57 5D 16
5925 52 5F 07 FC 19 54 57 ID 16 75 5F 46 78 C2 SF 46
5935 78 CS EF ,71 24 55 18 5C CC 57 28 CE 57 E9 54 51
5945 CC 5? F4 17 25 	16 79 07 88 3F 5A 	18 11 58 rr

JJ 57
5955 28 5) 87 E8 3F 58 53 51 E4 22 14 E4 GD 18 55 3F
5965 52 64 1B 6).! 57 	15 IF GA 12 1A 57 54 25 75 52 IF
5975 52 B4 54 2D 18 	79 3F 14 Cl 5F 66 9A 36 6B C5 C5
5985 5F 66 99 C2 E6 	15 9E 59 FS 16 85 	18 FA GD 57 E2
5940 18 15 SF 66 98 	18 56 51 A4 52 A2 	IA EA IF 16 26
5945 66 98 IA 14 36 2F FA 7C A5 51 	18 CA 36 23 36
5965 25 F7 55 18 52 F9 78 16 13 A5 51 	36 11 52 18 58
59C5 54 35 38 A2 A5 51 FA 78 3B 5C F9 	7C 16 AB 54 35
59D0 3B 94 54 2E 16 9G SF 66 9B B5 52 98 58 75 S2 87
54E5 51 44 SF 64 35 4F 52 64 77 52 55 55 55 5G 1 B 71
5915 38 5C 55 5A 3B 6S F9 7C 3F 59 68 54 45 38 E7 SF
5455 66 93 3F 59 69 56 52 SF 66 94 36 4D .FA 79 1B E9
5415 .:J7 39 74 57 3F rr J,J 84 3B 52 16 52 5F 2A 63 55 Cl
5425 111 7F 3F 52 64 51 9A 73 17 57 JJ

rr 3B 6E GC 57 F4
5A35 IC SE 68 3B 66 36 25 CB 9F 54 G4 CF 66 91 5C 57
5A45 F8 CF 66 94 5C 57 F7 CF 66 93 54 2C CC 57 FB 54
5455 12 CC 57 FA IF 58 28 5F 57 FD 25 56 S CF 26 97
5A65 FA 78 17 17 45 84 A4 A4 9E A5 45 82 A9 46 A8 Al
5475 45 A6 A8 9A AS AC 82 98 AB 9C 9E 45 45 9C 9E 8E
SA85 9F A4 A8 A4 9D 9C 8A A6 A9 54 88 	55 88 92 AC 45
5495 61 AA 9C A8 99 86 95 82 A5 9C 8A B5 A9 A6 9C A8
5AA5 81 84 AA 8C 8C 45 9E AC 8D 5C 57 F4 18 55 SC 57
5/465 E7 16 52 54 3E Cie) rr

JJ 31 52 64 3F 17 D3 Cl 18 7A
SACG E4 58 98 S6 A6 St 1A 61 18 75 CE 25 77 E4 SD 18
GABS SE 24 71 IC 	14 F7 26 65 98 65 57 3D IF 5A 12 3F
SAES J J 8A S5 55 CD G7 ES 55 78 IF 14 F3 A8 86 A8 45
OAFS 84 82 A6 92 86 76 45 AE A4 92 A8 A8 8A 9C 45 84
01355 82- 74 IA 14 A8 5C 98 9E 9C 8E 58 45 A8 5C AE 9E
5615 9E 98 98 8 A `A4 58 45 86 5C 84 82 A4 A4 82 A8 A8
5625 5C 14 14 55 86 52 45 62 72 6E 75 	41 45 4.5 45 75
01335 S2 S5 5A 3F 5A 57 CF 57 FD 5A FC 3F 58 9C 5C 87
5645 28 E4 2D 98 S8 54 F5 CE 66 92 3F 58 53 SC 87 E8
S655 CS C5 CS CS 38 35 18 39 E4 2E 9C 	14 Cl 3B EC 5C

1B
5A
E8
5F
56
DG
66
52
98
CA
57
16
5C
66
45
CF
IF
52
57
57
F2
5A
67
CF
A7
8 6
FA
57
98
57
3B
32
57
E5
25
3B
16
18
3F
3F
3F
58
F9
FF
51
53
08
17
25
75
FF
8A
313
F9

965 87 E6
51375' its 55
5P65 CA F9
5B95 17 313

E8 E4
5P133 1B 1B
r.fiCC;, 52 1
5131)5 15 C5
.BES 'C2 55
510.'5 5B 86
rdC',:s ra 44 5F
565:66 91
5C25 14 19
5C35:66 813
5C45 C2 3F
5C 55 A7 58
5C65 55 5F
5C75 E7 54
5C65,51 45
5C95 57 F3
5CA5 58 53
5CB5 5E 87
SCC5 .25 C8
SCDJ 51 77
5C EG 15 17
5CF5 AC 5D
5D5G 57 23
5D15 F2 F9
5D25 87 E5
5D3G 96 61
5D45 CC 67
5D55 E4 5D
51)65 E3 CF
5D75 57 23
5D85 E3 CC
5D95 32 3F
GDA5 3B ID
5D35 3F 58
5DC5 52 69
5DD5 139 5c
SDEG 98 11
5DFG F8 C5
5E55 2S C8
5E15 CC 57
5E25 E9 54
5E35 F2 17

. 5E45 15 A4
5E55 51 C8
5E65 5A 12
5E75 57 F9
5E65 32 3F
5E95 69'5D.
SEAS 16 C2
5E05 D5 5D

E4 35
54 F5
76 IF
73 18
2E 98
,44 5F
75 52
CE 66
55 3F
9C 5C
D2 D2
C3 SE
56 58
.D5 97
GC C3
CB FA
66 99
16 13
5F 61
55 18
ES 5D
F2 E9
D5 53
58 A5
5D 57
6E 52
3F 58
7C 57
5C 57
SF 57
F2'313
14 57
57 ES
3F 58
37 E5
1.7 BF
3B - 8D
53 5C
3F 5A
57 F4
3F 58
CS 3B
CF CC
FE CC
18 CC
55 55
2F C1
F2 17
CC 57
54 11
58 53
5? F3
3F 58
57 FD

98 54 F9
CE 66 95
59 D5 5C
14 54 5A
SE 57 28
B5 52 18
6E 66 93
91 5A C2
58 A5 E4
41 44 5F
D2 D2 62
66 95 El
E3 A3 94
53 SB D6
5C 87 E6
(LF 66 9B
19 55 57
54 FG 52
Cl DB 69
CD 57 F2
98 76 5D
D3 lA 65
77 15 C3
55 75 58
ER 56 FF
14 51 38
53 57 25
23 3F 5C
E4 EC 57
EE CF 87
F6 1B 53
28 3B E4
SF 57 F3
53 5D 87
F4 FF 14
18 54 3B
5D 87 F2
87 F2 E4
57 CF 57
18 2A 57
53 SC 87
EE 55 12
57 FD CC
57 FC CC
57 E8 17
3F 58 9C
CD 57 E2
58 F7 C8
F7 15' 58
56 FF 1F
GC 8 7 F2
3B F9 IF
53 5C.87
CD 26'97 C9

55 54 GA Al
3B 5B 98 56
E4
	

16 E4
57 FD 'CF 66
3B 57 3F G8
D5 DS D5 CE
93. 86 G1 17
3F 58 9C E4
55 55 FG 3F
8E 3B Fl 3B
EA 3B El 5E
EB ED 98 54
Cl AB DC 97
91 51 CF 66
98 76 1B F2
66 9C CI SF
5A 12 E4 55
52 42 46 5F
FE CD 57 EF
EB 57 32 5D
F5 FE 14 77
EE 57 EF 1A
C5 Cl 5F 27
67 C5 51 CF
ES E4 GD 98
53 3F 5D 513
E5 FF 98 75
25 3B FA SC
69 GC 57 E3
32 3F 58 53
Fl 5C 87 E8
18 6D SF 57
E4 CF 57 E6
5D 98 76 38
38 E8 57 23
97 GD 87 F2
54 25 3F 52
5C 3F 52 B4
11 A3 3F 11
5C C3 5C 87
5E 59 5C 87
CD 57 FA CE
55 11 56 FF
54 51 CC 57
CC 57 F3 54
18 59 3F 5B
53 58 F9 CC
E4 FE 98 55
CC 57 F4 CC
25 3F 5E 29
98 76 5D 57
3F 58 9C 3F
F3 IC 5C C3
57 3A 38 E6

75
55
87
Al
IB
5A
CE
77
PD
C2
CC
18
1B
CF
E4
C2
11
52
CE
CD
87
19
GF
52
5E
F9
38
C3
F3
F2
CS
57
CF
E3
57
FA
3B
5D
FD
28
E8
56
G7
57
54
E4
1F
ED
53
58
E4
55
E8

CE 66 91
31) 33 3B
39 15 F5
91 5C 87
53 F9 61
66 93 77
'SA CA 54
45 9C 5D
S8 53 3F
F2 98 SC
57 FD 5E
25 Cl 1B
113 55 87
95 IF 5D
GF 57 FD
66 98 IA
9A 77 C3
51 51 51
17 25 CC
8 7 F2 3F
52 3B F5
5E 19 53
CG C2 A6
47 CS 75
79 52 61
5D 87 E5
52 CI 3B
87 E3 CC
EC 57 F2
5C 57 FE
CC 87 F2
F2 CF S7
17 3B 6B
F5 5C 87
1B 6D 57
E5 FE 14
B4 12 15
1B 71 IF
D9 IF GE
ES E4 5D
E8 CC 27
57 FB 17
18 6A 25
F4 CC 57
18 CC 57
89 9C SA
57 EB 54
G7 59 1F
S7 FD CC
3B GC 57
F2 3F 52
14 B3 15
3F 14 BB
1B E4 59

5Pq7,5 	Fl SD 46 98 C2 57 58 5E 26 EF CD 26 97 ED 78 C9
/1%05 	El 17 57 28 75 FE IF 5A 12 57 11 1B 77 55 55 55
5EE5 25 C3 CF 66 C5 CF 67 55 DB 78 54 53 CC 57 E2 54
rjEE5 3E CC 57 E7 1E 5E 68 5C 57 F3 OE 57 E4 	IF 58 75
.,F55 55 58 5D C4 45 CD 64 ED 5D E4 42 CD 64 E4 59 72
c,E15 CD 54 EC 55 58 25 CD 44 F5 59 78 17 5F 84 44 27
5E25 F5 18 53 5F 84 44 77 5A aB 56 CF 54 E6 	75 51 5D
5F35 54 ED ED 54 E4 18 16 	59 5E 54 54 55 E4 56 58 3F
5E45 11 38 3F 11 56 18 66 54 54 55 ED 18 75 GC 54 EE
5F55 EC 54 E5 19 62 18 54 	59 65 18 6C 5C 54 E6 EF 54
5F65 EF 98 IG 33 2C 56 59 54 54 55 ED 3F 11 	38 	3F 11
5F75 56 18 18 77 51 38 31 	1A 54 38 3A 18 11 	CF 54 EF
5E85 56 56 5E 44 E7 AE 64 F5 94 CE 64 FG 5A 74 IF GF
5E95 F5 75 51 55 55 56 56 	51 5E 44 E5 84 66 DI 8E 64
SFAS E7 94 CE 64 F5 5A 75 	17 56 FA GE 63 F6 FE 63 ED
GFB5 98 G2 DA 76 17 77 GI 	56 56 5E 44 ES AE 64 E7 94
5FCC CE 64 F5 5A 74 17 57 58 55 rr JJ 3B 5C IA 57 38 65
SFDC 85 66 95 18 75 8D 54 EB CD 54 FB S4 54 55 ED 56
SEES 5F 3F 15 48 FB 62 3F 	11 56 57 58 3F 10 	51 	FB 78
5F F5 S4 G4 55 ED 56 5A 38 14 3F 11 25 5C 54 FC 9., GE
1555 D9 57 58 5F 44 ED CF E4 46 5B 78 17 CE 54 E2 CC
1515 	54 E5 CD 54 El 57 55 55 52 75 51 5D A4 ES 98 19
1525 87 52 ES 58 98 75 CI 	54 F5 CC 84 EG 54 99 CD A4
1535 ES 25 CD A4 ES CC 54 FC 17 44 FG 98 52 87 GI 53
1545 	14 3B GE 3B 21 FB 7A 	17 CE 54 E2 CC G4 E5 CD 54
1555 	El 55 G4 5E 54 E2 75 51 5E C4 E5 DG CE E4 ES E6
1565 53 98 75 F9 6E 17 5D A4 E5 GE 84 E5 18 5A 84 67
1575 94 IC SE D9 CD E4 ES 	17 58 5F EC G4 FC 98 57 56
1585 F5 CE 84 E5 18 68 CC 54 FC A4 GG JJ 94 18 66 57 8G
1595 SE 84 42 26 F5 18 G5 57 55 5E 84 42 77 GB 3F 5F
1SAS rJJr 53 113 56 5C 54 E7 	IC GE D2 5C 54 EF EC S4 E6
15135 18 54 54-F5 18 51 25 CC 54 EF EE G4 ED 98 GC GC
15C5 54 E5 84 65 8C 54 EE 94 DI 1B lE GC 54 EE EC 54
15D5 E5 19 5C 98 52 56 rr JJ GC 54 E5 AC 54 EE 18 56 5E
15E5 54 ED AC 54 ES 94 CE 54 ED CC 54 EE CD 54 FC 75
15FS GI G4 S4 55 E4 56 58 38 3F 5F 5F C6 57 GC 54 54
1155 S5 ED 56 5E 38 32 FB 76 57 GA .38 35 GC 54 FB 18
1115 SA A4 5F CC 54 FB 3F 5F 91 18 71 FB 6D IF 5F FS
1125 54 B6 CS 55 56 8D 44 FO 94 CD 64 F5 54 66 59 75
1135 B5 Cl 16- 3B 5C 38 IF 	17 CE 54 E2 CC 54 E5 CD 54
1145 	El 55 54 56 52 5E A4 EG 55 CE E4 ES EE 54 E2 98
1155 	74 75 Cl F9 6E 17 SD A4 E5 5E 84 ES 98 SE 84 67
1165 94
1175 FC

98
A4

55
re
J4

55
94

51
58

CD
72

54 FC
CC 84

CD
ES

E4
18

ES 	17 58 53 CC
6D 5D 57 FD GD

S4
46

1185 95 84 58 C2 57 58 5D 46 99 CE 46 FS FB 78 C9 EC
1195 	17 58 E9 25 CF 66 92 17 58 E2 5F 66 92 24 F5 CF
11A5 66 92 17 58 D7 87 98 56 56 52 Cl 51 53 AD 71 Cl
1185 C3 CE 44 45 54 56 CE 44 45 5A 6E CF 54 47 CC 54
1105 46 17 58- 52 56 GF 57 F4 15 IF 5A 15 G7 28 5D 87
11D5 E8 3F 58 53 E5 5D 14 	18 75 3F SF 23 18 5D 3F SF
11E5 	IC 1B S8 3F 15 SE 18 53 3F 15 97 75 FF 5F 57 FD
11F5 A7 58 CB FA 5E 66 93 	15 16 CF 66 9S CF 66 91 17
1255 CC 8A 5A A9 32 G8 8D 52 51 58 2F 52 14 5C 4D GC
1215 8E SC E2 52 51 32 34 4C 49 53 D4 17 BA 52 4F GC

1225 4D 5C 8E 52 26 5E 27 5D 8F 51 	FF 5A 15 5E 4A 59
1235 76 5E 54 5E 55 32 3F 52 55 CE 59 5E 5E 5F 5D Dl
1245 32 48 43 4C 45 41 D2 58 5A 34 97 4E 45 D7 58 55
1255 58 2F 52 24 52 4E JJ rr rr 00. 	32 ,5D 4C 45 D4 0- 93
1265 52 6C 32 2A BD 93 D5 11 	7B 	59 5E 5D DI 32 77 46
1275 49 D8 5E 32 59 GE 5D DI 	32 89 49 C6 96 37 32 83
1285 54 48 45 CE 58 6F 15 4C 52 	58 32 9A 55 4E 54 49
1295 CC 11 	C5 96 37 59 GE 15 	72 	5D DI 32 A4 44 CF 59
12A5 5E 15 55 5D DI 32 C5 47 CF 32 82 54 CF 93 D5 59
1285 GE 52 BD 32 2A 53 55 C2 93 D5 59 5E 58 EA 5C 4D
12C5 GC 8E 14 DB 5D DI 32 D3 52 45 54 55 52 CE G9 GE
1e175 59 21 	SD DI 32 EA 4E 45 58 D4 11 C5 SE 99 52 2A
12E5 59 5E 16 8D 93 D3 16 77 SD DI SCJ 33 14 46 4F D2
12F5 11 C5 5E 99 52 2A 32 2A RD 93 D5 32 2A 54 CF 93
1355 D5 33 5A 53 54 45 D5 93 D5 53 5C 15 D7 59 5E 16
1335 47 11 	78 5D DI 33 35 A4 93 D5 32 2A BD 33 25 A2
1325 5C 4D 17 5E 53 2C 32 2A A4 94 13 17 4G 59 5E SD
1335 DI 33 5D 55 D2 33 39 49 4E D4 33 45 A2 59 4F 53
1345 4D 33 49 A4 93 D5 16 F3 53 4D 93 D5 S9 76 33 52
1355 AC 53 39 	33 57 BB 53 59 55 8A 59 5E SD DI 23 89
1365 49 4E 55 55 D4.15 95 11 	C5 SE 99 53 7F 15 15 93
1375 D5 11 	7B 	15 55 33 77 AC GE 99 53 59 15 55 48 67
1385 32 2A A4 94 13 17 38 53 	59 	11 33 93 53 54 4F D5
1395 14 C9 GE JJ rr 33 A5 55 49 55 42 55 C7 55 JJ rr rr JJ rr JJ

13A5 re JJ 34 A3 52 45 CD 11 CC _5D DI 93 D5 33 82 BD 93
1385 D5 15 	lE 33 C7 BC 33 BC BD 93 D5 15 25 33 C3 BE
13C5 93 D5 15 24 93 D5 15 IC 32 2A BE 33 DI BD 93 D5
13D5 15 1A 93 D5 15 22 33 DE AD 93 FB 11 98 53 E3 33
.13E5 El AB 93 FB 33 EE AB 93 FB 	11 A3 11 D9 53 E3 33
13F5 F9 AD 93 FB 11 A3 11 DE 53 E3 58 D6 94 13 34 58
1455 AA 94 	13 	11 A3 11 E8 53 FD 33 F9 AF 94 13 11 A3
1415 11 E3 53 FD OE 99 54 18 	SE`'-- BF 58 D6 58 2F 54 21
1425 58 D6 34 2B AS 93 D5 32 2A A9 54 31 34 33 55 C9
1435 15 D5 G8 D6 34 41 41 42 D3 32 2A A8 94 24 11 91
144E G8 D6 54 54 53 49 CE 32 2A A8 94 24 S4 55 08 D6
1455 03 6F 58 6F GG 34 62 49 4E D4 32 2A A8 94 24 15
1460 99 58 D6 34 71 46 52 41 	C3 32 2A P.8 94 24 16 57
1475 SS D6 32 2A 4D 4F C4 94 88 	11 A3 11 E3 17 9F 11
1485 ES 58 	D6 	11 A3 11 ES G8 D6 32 2A AS 93 D5 32 2A
1490 AC 93 D5 32 2A A9 58 D6 32 58 53 49 5A C5 59 5E
14A5 5E 78 5D DI 32 2A 44 55 4D D5 17 BB 52 4F GD D1
1485 5D DI 	D6 E4 41 16 E4 5A 15 E5 17 A6 41 D2 D2 .52
14C5 17 5F 57 FD A7 G8 CB FA 17 3F 58 9C 5D 87 ES 3F
14D5 58 53 E5 GD 14 51 3F 52 B4 1B 71 5C 57 ER 18 55
14E5 57 19 	IF GA 12 04 51 CC 57 F4 5C 57 F2 5D 57 F3
14FG CC 57 ES CD 57 E9 17 G7 25 3F GA 1B BB A5 1B 17
1555 GC 57 Ed 50 57 C5 Ca FC C9 F7 5C 5/ EtJ SD 57 Cl
1.515 C8 FC C9 F? 17 38 69 IF 5A A9 A4 03 A4 51 A4 51
1525 A4 SI A4 51 44 57 CC G7 E3 3F 11 A3 3F 11 DE 5D
1535 S7 FD A5 58 C9 FA G7 54 5D 66 9E1 18 G6 5D 66 9A
154E 18 52 53 53 4B El CF 57 F6 IF 58 D6 5B F9 15 3F
1555 11 CC 1F SD DI SF 57 F4 IC GA 1G SF 57 FF E7 25
1565 9E 58 Fl 5C 57 E8 CF 26'57 5C 57 E9 CF 26 57 CB
157E EB 17 58 E8 93 55 57 2D IF 5A 12 SC G7 F6 9-8 GB'

I565 GF 66 57 C8 F5 5F 66 56 C8 DA 17 A? G2 CB CD 17
1595 3F 58 9C CC 57 E7 IF 58 53 77 G2 5F 57 FD 5F 66
15A0 90 18 G5 A7 58 1F GA 5A 5F 66 91 18 76 E4 G9 15
1535 5(“2 44 7F 83:C3 F6 85 98 GE SF 66 93 44 F5 CF
15C54.6 93 87 51 467F 86 5I. 25 E6 55 18 55 CF 26 92
I5D5DA 77 75 52 17 A4 Si A4 51 A4 13 D5 D5 D5 5F 57
15E5 FD C2 55 58 5E 35 EE CF 26 97 F9 78 CD Fl 17 aa rr

15F5 St 55 31 41 59 26 54 SS JJ (L1 GO 1C r 55 55 J r SS
)655 5,4;55 	JJ J r Jr 55 5C 57 FD

C3 84 56 C2 3B GB

1615 CS F6 3'F 15 99 3F II A3 IF 11 DE 55 58 5F 26 8F
1625 C8 2. 6 8F F9 78 17 51 82 E4 51 98 55 54 35 1F•52
1635 B4 52 IC 59 B9 IF 59 AG 33 A9 A4 94 13 32 2A BD
1645 32 2A A4 94 13 17 66 5F 57 FE E7 4C 9E 58 Fl SE
1655';57 FD A6 15 CA FA A6 59 5E 66 98 CF 26 57 SC 57
1660 	CF 26 57 GC 57 E9 CF 26 57 55 15 SE 26 AG CF .
1675 26 57 F9 78 CB D2 17 SB CF 5E 57 F6 98 5D SF 65
1685 F6 C8 DC SF 65 F7 C8 DD 17 A7 13 IB 67 5D 57 FD
1695 5E 57 FE 98 55 57 35 IF GA 12 GE 65 F5 ED 66 97
16A5 9C 16 95 CC G7 F6 3F GE BF 57 58 GA E4 SE 25 FF
16135 CD 26 97 FR 78 C9 D7 3F 11 A3 3F 11 D9 GA E5 G9
16C5 CD 57 58 5D 26 8F CE 26 EF FB 78 C5 C5 GA C2 CD
16D5 57 FD 57 58 GE 25 F7 CD 26 8F FB 78 17 3F 5E 27
16EG 57 32 SD 87 F2 3F 58 53 E5 FE 98 76 3F 5C 97 SD
16F5 5.7 EB 17. 3F SC 4D 3B 65 18 55 57 31 IF 5A 12 3B
1755 E5 3B E3 SC 87 F2 E4 SD 14 3F 52 B4 IB 73 57 28
1715 56 JJ JJ GD 87 E8 3F 08 53 51 CE 25 77 E4 5D IC 59
1725 64 E4 22 98 6D'54 5D CE 65 77 3F 15 JJ rr 3F 16 DD
1735. 3F GA E2 3F 5C' ,E2 18 F3 3F 15 15 3F SC 4D 18 6D
174E 3B FA 3B EA 9C 16 FA 57 32 3F 58 53 3B FC Sc 87
1755 F2 CD 25 77 E4 SD 98 74 313 DI 3B 5F SF 57 F4 15
1765 . 54 5D CCji7 ES 17 3B D4 3B CI 3B C2 3F 14 EA 3F
1775 SC 4D 3F16 DD 3B 1E 3B 1C 25 CC 57 F6 5D 87 F2
178E ED 87 E8 98 58'3B GE E5 5D 98 72 C9 EE 3F 15 Cr JJ

1795 IF 58 D6 CS C5';57 32 3F 58 53 57 28 IB FA 17 5C
17A5 07 FD 84 58 C3'84 58 C2 3F 16 IB 3F 16 G7 53 84
1785 58 CC G7 FD C2 84 58 C3 16 EF 25 CC 57 F6 17 58
17C5 FB 98 53 IF 55 8A 54 5D 3F 52(134 55 rr

JJ 3F 52 A8
171)5 F9 7B 1,7 77 (00% 01 'a (A 70 3F 02 AD CI 3F I/
17E5 FT 3P 52 AS '3B 'F9 44 85 51 61 Cl FA 74 3B F3 45
17F5 7F 76'45 51 75 18 17 1.2.9A 03 76 45 17 74 45 17

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33

