
     N.V.PHILIPS Natuurkundig Laboratorium                  V.O.S.

                                                            NR  : ALDEF

                                                            DD  : 2024-07-18

                                                            PAR : JH

         TWIN 2650 ASSEMBLER AND LINK EDITOR

    1. Introduction

    

    The TWIN Assembler ver 2.0 has certain limitations which present difficulties with  larger

    software systems. The most important drawbacks are:

    

     1. It is very complicated to link separately assembled programs and all links are  to  be

        updated manually after every change in one of these programs.    

        

     2. an assembled program can be  executed  only  in  the  memory  locations  specified  at

        assembly time.    

        

        Suppose that consecutive memory locations are assigned to a number of programs.  When,    

        due to some change,  a program in the beginning is enlarged,  all next programs are to    

        be re-assembled too.    

        

     3. the execution of an assembler run needs a large amount of time.

        

    To avoid these drawbacks a new assembler, called "2650 Assembler", has been developed. The

    main differences with the original assembler are:

    

     1. A relocatable output is produced,  so the locations  in  which  a  program  is  to  be

        executed can be determined after assembling;    

        

     2. It is possible to introduce itmes which  are  defined  in  other  programs,  so  links

        between separately assembled programs can be established mechanically;    

        

     3. The assembly time is reduced with a factor 4 to 5 ( an assembly run  of  20  min. with

        the original assembler is reduced till 4-5 min. with the new assembler);    

        

     4. The mnemonic branch-instruction codes are extended by the inclusion of  the  condition

        in the mnemonic (for  example,  BER  is  equivalent  to  BCTR,0) which  increases  the    

        readability of programs;    

        

     5. Default operands are possible (except for addresses), the default value is 0;

        

     6. ASCII data constants and other types of data constants may be  combined  in  a  single

        statement;    

        

     7. Data definitions may be preceded by a multiplication factor;

        

     8. The number of bytes in a  character  string (ASCII  data  constant) can  be  specified

        explicitely;    

        

     9. The assembler instructions PRT and PCH are deleted;

        

    10. Finally,  the new  assembler  accepts  most  correct  version  2.0  programs (see  for

        exceptions 4.5 "instruction ORG").    

 



     N.V.PHILIPS Natuurkundig Laboratorium                   ALDEF

                                                             PAG :     2

    To link separately assembled programs  a  Link  Editor  has  been  constructed.  The  2650

    Assembler produces an object module.  The Link Editor links a number of object modules and

    edits these modules into one or more load modules. These modules can be loaded by means of

    the system commands LOAD and XEQ.

 



     N.V.PHILIPS Natuurkundig Laboratorium                   ALDEF

                                                             PAG :     3

    2. Evaluation of expressions

    

    Due to the relocation facility and the ability to refer to external symbols, several types

    of operands in expressions are to be distinguished. These types are:

    

     1. Constant

        A constant is an internally defined item with an invariant  value.  Constants  can  be    

        defined by the assembler instruction EQU, for example:    

        

          CR   EQU   H'0D'    

        

     2. Address

        An address is also an internally defined item,  but its final value is  determined  by    

        the Link Editor when the  program  is  edited.  Labels  of  machine  instructions  are    

        examples of addresses.    

        

     3. External reference

        An external reference is a reference to a item which is defined  in  another  program.    

        There it is either an address or a constant.  External references  are  introduced  by    

        means of the instruction EXTRN.    

        

    All operations are allowed on constants,  but only a  limited  number  of  operations  are

    useful on addresses and external references.  When  an  operation,  not  giving  a  usable

    result, is performed on an address or an external reference, the result is a constant. The

    operations, types of operands and the type of the result are given below. 

    

         operation               operands      result

    

         addition:               A + C           A

                                 E + C           E

                                                 C in all other cases

         subtraction:            A - C           A

                                 E - C           E

                                                 C in all other cases

         any other operation:                    C in all cases

    

    In this table means:

    

      A : address

      E : external reference

      C : constant

    

 



     N.V.PHILIPS Natuurkundig Laboratorium                   ALDEF

                                                             PAG :     4

    3. External Symbol Dictionary

    

    In order to  allow  links  between  separately  assembled  programs,  each  object  module

    comprises and External Symbol Dictionary (ESD). The ESD is printed at the beginning of the

    program listing. An ESD can contain the following types of records:

    

     1. SD - Section definition

        The first record in each ESD is of the type SD.  It contains the name of the  section,    

        its assembled origin and its  length.  The  section  name  can  be  specified  by  the    

        instruction CSECT (see below).    

        

     2. LD - Label definition

        An ESD can contain several records of the type LD.  They identify symbols,  associated    

        to addresses and defined in the corresponding program,  together  with  their  values.    

        Other (separately assembled) programs may refer  to  these  symbols.  The  instruction    

        ENTRY is responsible for the generation of the LD-records.    

        

     3. CD - Constant definitions

        A CD-record is similar to a LD-record,  exept that the value is not an address  but  a    

        constant. The CD-records are also generated by ENTRY-instructions.    

        

     4. ER - External reference

        The ER-records form the counterpart of the LD-records and the CD-records. They contain    

        the symbols (with a sequence number) which are defined as "external" in the associated    

        program. The instruction EXTRN is to be used for this purpose.    

        

    At link editing time a symbol-table is constructed.  This symbol-table  contains  all  the

    symbols from the SD-records, the LD-records and the CD-records. Each symbol may occur only

    once.  During the editing of an object module the values corresponding to the "ER-symbols"

    are retrieved from this symbol-table and the values are added to the object module.

    

    The following assembler instructions exist for the construction of an ESD:

    

     1. CSECT

        The instruction CSECT can be used to define the name of an object module.  Each source    

        program may contain at most 1 CSECT instruction.  Normally this instruction is  placed    

        at the beginning of the program. The instruction format is:    

        

          <lbl> CSECT    

        

        The label is optional,  it denotes the name of the object module.  The address of  the    

        assembled origin of the module is assigned to a present label.  The instruction has no    

        operands.    

        

     2. ENTRY

        The instruction ENTRY is to be used to specify the symbols which may be referred to in    

        other programs. The format is:    

        

                ENTRY   <sym>  [ , <sym> ]    

        

        The instruction may not be labeled.  The operand constists of a string of symbols; the    

        symbols are separated by commas. These symbols must previously be defined as the label    

        of some machine instruction or assembler instruction.    

        

     3. EXTRN

        The instruction EXTRN is to be used to specify the symbols which are defined  in  some    

 



     N.V.PHILIPS Natuurkundig Laboratorium                   ALDEF

                                                             PAG :     5

        other program but to which is referred in this program. The format is:    

        

                EXTRN   <sym>  [ , <sym> ]    

        

        The instruction may not be labeled.  The operand consists of a string of symbols;  the    

        symbols are separated by commas.  These symbols may not be defined  as  label  of  any    

        instruction.    

        

        The only exception is given by EXTRN-statements which are  generated  by  means  of  a    

        macro-instruction.  Then the attribute ER is ignored if the concerned symbol  is  also    

        defined in another statement.    

 



     N.V.PHILIPS Natuurkundig Laboratorium                   ALDEF

                                                             PAG :     6

    4. Extension of the instruction set

    

    In order to symplify the writing of programs and to increase the readability of  programs,

    the mnemonic branch-instruction codes are extended and the assembler instructions ACON and

    DATA are modified.  Also two new assembler instructions are introduced,  a listing control

    instruction and an instruction to copy source lines into the object  module.  Because  the

    Link Editor produces load modules, the use of the instruction ORG is restricted.  Finally,

    the PRT-instruction and the END-instruction are slightly changed.

    

    

    4.1. Mnemonic branch-instructions

    

    The additional branch-instructions are intended to  be  used  after  compare-instructions,

    load- and arithmetic instructions and the instruction TMI.  These instructions with  their

    equivalents are:

    

           situation                                       extension    equivalent

    

        after compare              branch if high            BHR          BCTR,1

                                                             BHA          BCTA,1

                                             equal           BER          BCTR,0

                                                             BEA          BCTA,0

                                             low             BLR          BCTR,2

                                                             BLA          BCTA,2

                                             not high        BNHR         BCFR,1

                                                             BNHA         BCFA,1

                                             not equal       BNER         BCFR,0

                                                             BNEA         BCFA,0

                                             not low         BNLR         BCFR,2

                                                             BNLA         BCFA,2

    

        after load- and            branch if positive        BPR          BCTR,1

        arithmetic operations                                BPA          BCTA,1

                                             zero            BZR          BCTR,0

                                                             BZA          BCTA,0

                                             minus           BMR          BCTR,2

                                                             BMA          BCTA,2

                                             not positive    BNPR         BCFR,1

                                                             BNPA         BCFA,1

                                             not zero        BNZR         BCFR,0

                                                             BNZA         BCFA,0

                                             not minus       BNMR         BCFR,2

                                                             BNMA         BCFA,2

    

        after TMI                  branch if ones            BOR          BCTR,0

                                                             BOA          BCTA,0

                                             mixed           BMR          BCTR,2

                                                             BMA          BCTA,2

 



     N.V.PHILIPS Natuurkundig Laboratorium                   ALDEF

                                                             PAG :     7

    Also the following unconditional branch-instructions exist:

    

        extension   equivalent

    

          BR          BCTR,3

          BA          BCTA,3

          BSR         BSTR,3

          BSA         BSTA,3

          RET         RETC,3

    

    

    4.2. Instructions DATA and ACON

    

    The data definitions in the instructions DATA and ACON may be preceded by a multiplication

    factor and the length of character strings can be defined explicitely.

    

    Two types of data constants are distinguished: character strings and other constants. Both

    types may be specified in the  same  DATA  instruction.  A  character  string  occupies  a

    variable number of bytes,  this number is either implicitely or explicitely specified.  An

    other constant occupies always a single byte.

    

    Each data item which is defined by means of the instruction ACON uses always 2 bytes. This

    instruction cannot be used to define character strings.

    

    The syntax of the operands of the DATA- and ACON-instructions is:

    

        <operand>       ::= <constant> [ , <constant> ]

    

        <constant>      ::= <factor> <A-constant>

                          ! <factor> <expr-string>

                          ! expr

    

        <factor>        ::= self defining constant

                          ! ( expr )

                          ! nill

    

        <A-constant>    ::= A <length> chr-string

    

        <expr-string>   ::= H ' H-expr [ , H-expr ] '

                          ! B ' B-expr [ , B-expr ] '

                          ! O ' O-expr [ , O-expr ] '

                          ! D ' D-expr [ , D-expr ] '

    

        <length>        ::= L self defining constant

                          ! L ( expr )

                          ! nill

    

    All operators are allowed in any type of  expression.  Also  all  types  of  operands  are

    allowed in normal expressions (syntax element "expr").  Symbols which are used  in  normal

    expressions must previously been defined.

    

    The operands used in other types of expressions are interpreted conform to the  expression

    identification,  e.g. the  operands  of  a  hexadecimal  expression (element   H-expr) are

    interpreted as hexadecimal digits.

    

    The value of a multiplication factor ( element "<factor>") may  not  be  an  address;  the

 



     N.V.PHILIPS Natuurkundig Laboratorium                   ALDEF

                                                             PAG :     8

    allowed range for the value is 1 - 255.  The value of an explicite length definition of  a

    character string (element "<length>") must be a constant in the range 1 - 127.

    

    The multiplication factor indicates the number of times the following constant  is  to  be

    generated.  If no factor is specified the value 1 is assumed.  For example,  the  constant

    definition 2H'0,0' produces 4 bytes with the value 0. This definition is equivalent to the

    definition H'0,0,0,0'.

    

    If the explicite length of a character string is greater than the length of the  following

    string,  the given data are left aligned and are padded  with  blanks,  e.g. the  constant

    AL4'ON' produces the character string 'ON  '.  If the explicite length is  less  than  the

    following string,  this string is truncated when the explicite length  is  exhausted,  the

    constant AL2'DATA' results in the string 'DA'. The truncation is not signalled.

    

    

    4.3. Instruction CEJE

    

    The new listing control instruction is a conditional eject. The format is:

    

            CEJE   <expr>

    

    In which <expr> is a normal  expression.  This  instruction  is  equivalent  to  a  normal

    EJE-instruction if the remaining number of lines on the current  page  is  less  than  the

    value of the expression.  If the remaining number of lines is equal to or greater than the

    value of the expression, the instruction has no effects.

    

    

    4.4. Instruction REPRO

    

    Often it is desirable to apply certain link editing commands  to  the  Link  Editor.  Such

    commands are not automatically supplied  by  the  Assembler,  but  the  Assembler  has  an

    instruction to copy such commands from the source module.  This is the instruction  REPRO.

    The format of this instruction is:

    

            REPRO

    

    The instruction may not be labeled and it has no operands. The instruction means:

    

        copy the next source line into the object module and do not assemble that line.

    

    The instruction REPRO is executed during pass I of an  assembly  run,  so  the  reproduced

    statements appear at the beginning of the object module before the ESD.

    

    

    4.5. Instruction ORG

    

    Because the Link Editor produces load modules, the use of the assembler instruction ORG is

    restricted. The instruction ORG may not set the location counter to a lower value.

    

    The Link Editor fills the space  between  two  consecutive  parts  of  defined  code  with

    arbitrary data.  An ORG-instruction that sets the location counter to  a  value  which  is

    lower than the current value introduces a "negative" space. Such a space cannot be handled

    by the Link Editor.

 



     N.V.PHILIPS Natuurkundig Laboratorium                   ALDEF

                                                             PAG :     9

    4.6. Instruction END

    

    The meaning of the END-instruction is changed as follows:

    

     1. An END-instruction is optional;

        

     2. An END-instruction does not require an operand;

        

     3. The operand of an END-instruction is ignored, except when this is an address.  Then it

        is used as the entry point of the module.  Otherwise the  module  has  no  explicitely    

        defined entry point.    

        

    

    Note: A phase, as produced by the Link Editor (see below), needs an entry point. The entry

          point of the last module edited in a phase is used.  When no entry point exists, the      

          begin address of the phase is taken as the entry point.      

          

 



     N.V.PHILIPS Natuurkundig Laboratorium                   ALDEF

                                                             PAG :    10

    5. Link Editor commands

    

    Although the Link Editor is able to produce  an  executable  program  from  single  object

    modules,  some Link Editor commands might be useful.  The following Link  Editor  commands

    exist:

    

     1. PHASE

        This command is used to identify a phase.  A phase is a separtely stored load  module.    

        Such a module is equivalent to the modules produced by the  SDOS-command  MODULE.  The    

        format of a PHASE-command is:    

        

                <b> PHASE <name>  [, <origin> ] [ <id> ]    

        

        The command line must begin with a blank. <name> denotes the name of the load  module;    

        this is the only required operand.    

        

        <origin> specifies the begin address of the phase.  It  is  represented  by  a  normal    

        expression. The default value is the current state of the location counter.    

        

        <id> is the  module  identification.  This  is  a  character  string  of  at  most  21    

        characters; longer strings are truncated after 21 characters.    

        

     2. INCLUDE

        This command is used to include a  separtely  assembled  module.  The  format  of  the    

        command is:    

        

                <b> INCLUDE <name>    

        

        The command line must begin with a blank. <name> denotes the name of the object module    

        to include.    

        

        The Link Editor replaces this command by the module to include.    

        

    Besides the input of the Link Editor may comprise comment  lines.  The  first  byte  in  a

    comment line is the character '*'. Comment lines are only listed in the store map. Comment

    lines must contain at least  2  characters (exclusive "EOL");  less  characters  cause  an

    I/O-error.

 



     N.V.PHILIPS Natuurkundig Laboratorium                   ALDEF

                                                             PAG :    11

    6. Execution of the assembler program

    

    The 2650 Assembler is initiated by means of the system command ASM.  The  format  of  this

    command is:

    

      ASM <ifile> <lfile> <ofile> <gen>

    

    <ifile> denotes the file containing the source text.  This is the only required parameter.

    <lfile> identfies the file that is to contain the program listing.  If this  parameter  is

    omitted,  no listing is produced.  If CONO is specified as <lfile>,  the listing lines are

    truncated after 79 characters. <ofile> identifies the file that is to contain  the  object

    module.  No object module is stored if this parameter is omitted. <gen> indicates if macro

    expansions are to be listed.  When a fourth parameter is specified,  the listing will also

    contain the instructions that are generated by the macro-processor.

    

    After successfully initiation, the Assembler displays the message:

    

      ** 2650 ASSEMBLER **

    

    All detected errors are displayed on "CONO",  the errors which are encountered during pass

    II are also indicated in the listing.  Upon termination of the assembly program the  total

    number of assembly errors is displayed. The same message is added to the listing.

    

    The detected errors in the source text are identified by a letter.  These are the same  as

    used by the Assembler ver 2.0.

    

    Upon the detection of an input/output error a message is  displayed  and  the  program  is

    terminated. The format of such a message is:

    

      ** ERR <cc> <id>FILE **

    

    <cc> denotes the SRB status (see TWIN  Operating  System); <id> identifies  the  concerned

    file. The possible identifiers are:

    

      S : source file;

      L : listing file;

      O : object file.

 



     N.V.PHILIPS Natuurkundig Laboratorium                   ALDEF

                                                             PAG :    12

    7. Execution of the link editing program

    

    The Link Editor is invoked by means of the system command LNK.  The format of this command

    is:

    

      LNK <ofile> <lfile> <bfile>

    

    <ofile> denotes the file which contains  the  object  code (including  PHASE-commands  and

    INCLUDE-commands).  This is the only required parameter. <lfile> specifies the file  which

    is to contain the store map.  If this parameter is omitted, no store map is produced.  The

    parameter <bfile> is useful when the object code does not contain a PHASE-command. In this

    case the edited programs are stored in <bfile>.  When both the  object  code  contains  no

    PHASE-commands and the parameter <bfile> is omitted, the edited programs are not stored.

    

    After successfully initiation, the program displays the message:

    

      ** 2650 LNKEDT **

    

    The store map contains the following data:

    

     1. For each phase are listed the phase name (if any), the begin address, the end address,

        the entry point and all object modules contained in that phase;    

        

     2. For each object module are listed the module name (if such a name exists),  the offset

        with respect to the assembled origin and all external symbols defined  in  the  module    

        with their value.    

        

    The Link Editor can display certain error messages. These messages are:

    

     1. INVALID PARAMETER

        The system command contains an invalid parameter. The program is terminated.    

        

     2. TOO DEEP NESTING

        The nesting level of included modules exceeds 4. The program is terminated.    

        

     3. TOO MANY PHASES

        The object file specifies more than 20 phases. The program is terminated.    

        

     4. INVALID ASSEMBLED ORIGIN

        The indicated section started with an ORG-instruction,  but the specified location  is    

        already occupied. The section is edited at the first available position.    

        

     5. TOO MANY SYMBOLS

        The symbol list is full. The program is terminated.    

        

     6. s <record>

        Syntax error in record. The record is ignored.    

        

     7. u <record>

        Undefined symbol in record. The record is ignored.    

        

     8. m <symbol> <file>

        The external symbol <symbol> is defined a second time in <file>.  This  occurrence  of    

        the symbol is ignored.    

 



     N.V.PHILIPS Natuurkundig Laboratorium                   ALDEF

                                                             PAG :    13

     9. u <symbol> <file>

        The external symbol <symbol> is defined as  EXTRN  in <file>,  but  it  has  not  been    

        defined as ENTRY in another module. The value 0 is assigned to this symbol.    

        

    10. p <section> <file>

        A paging error is detected in the section <section>.  The address is resolved for  the    

        current page.    

        

    The Link Editor displays input/output errors in the same way as the Assembler.

 


