
© EUROMICRO
EUROMICRO Journal 6 (1980) 41-43

MODEST a Novel Development System for an
Industrial Microcomputer System
A. H. J. Schatorje B.I.J. Bruinshorst
Philips Eindhoven, Electronic Components, and Materials Div.,The Netherlands Philips Research Lab., Eindhoven,The Netherlands

Microcomputers in the industrial environment require high performance but pkysically small low
cost development systems providing on-site (re)progran~ing facilities. Philips have introduced
'~ODEST", a novel system for the program development and debugging of their Industrial Micro-
computer System (IMS) programs.

1. INTRODUCTION
During the last few years there has been an increasing demand
for microcomputer card systems. However, the starting point
with microcomputers is nearly always the program develop-
ment system. Until now, the potential user had the choice be-
tween large complex and expensive systems and small straight-
forward systems which are very limited in performance.
To make it easier to start with microcomputer systems, Philips
have designed for their Industrial Microcomputer System
(IMS) - the IMS-MODEST programming and debugging
system.

2. THE IMS CONCEPT

IMS offers a wide selection of compatible system functions
on individual modules. At present, ten different types of
module allow design of unique microcomputer systems for
most applications. Other modules are in preparation and the
range is being continually extended.
Modules plug into a printed circuit back panel on which the
system bus is implemented. This arrangement allows almost
any combination of modules. Because modules are built on
standard Eurocards, the whole system can be housed in a
19-inch Eurocard rack (DIN 41612).
Flexibil ity of hardware is complemented by equally flexible
software. As well as fully proven standard subroutines
available off-the-shelf, there is MODEST which offers
indispensable aid when developing customized software.
Modules available include:
- C e n t r a l P r o c e s s o r based on the Signetics 2650 series of

8-bit microprocessors, having 75 instructions and 7
addressing modes. The module has 1 Kbytes RAM, up to
4 Kbytes PROM or (E)PROM. A clock oscillator as well as
DMA facility and fully buffered control lines are on the
board.

- PROM end RAM memory modules extend CPU memory
by up to 32 Kbytes, or more if memory management
facilities are used. Each PROM module holds up to
16 Kbytes of PROM or (E)PROM; each RAM module
holds up to 8 Kbytes of static RAM. The (E)PROM
memory ICs used can be selected from several types
offered.

- I n p u t a n d output modules each having two 8-bit TTL
compatible ports. Filtering of inputs is possible and outputs
can sink up to 300 mA.

- Teletype module provides RS232 teletype interface, a
current loop with opto-coupler and an audio cassette
interface.

- M o d e s t m o d u l e s containing all (E)PROMS, peripheral
circuits and drivers to be used in the MODEST system.

MODEST

The MicrOcomputer DEvelopment SysTem,MODEST, is not
more than three cards connected to the system bus (back
panel) of an IMS user system (fig. 1).

With the help of these cards, the user program can be
developed and debugged directly in the user system. MODEST
uses the CPU of the CPU card, the RAM and/or PROM of the
CPU card and/or the memory boards. In the testing phase of
the system, MODEST has access to the user I/O via the CPU.

3.1 Principle of o p e r a t i o n
Instruction mnemonics are typed in character by character on
the VDU keyboard. The MODEST mnemonics assembler
loads object code in the user RAM (for a small program, e.g.
the RAM on the CPU card), where the program under
development is stored. An on-line disassembler in MODEST
returns mnemonics to the CRT for display.
In this way a very direct programming - eliminating the
pitfalls of hex or machine level coding - is obtained.
Furthermore, the addresses, address stack, Program Status
Word, registers and RAM contents can be brought to the
screen clearly formatted to allow program evaluation and
direct corrections.

,~B,TS 16 B,rs

Fig. 1. Block Diagram of an IMS System using MODEST.

41

42 D.T .J . B r u i n s h o r s t and A .H.J . Scha to r j ~

~ DDRESS SYSTEM
BUS

INTERNAL ADDRESS BUS

..... l] l I/O 256 bytes 8 K bytes
RAM PROM

DECODER

BRANCH PROM PRINTER O
GENERATOR PROGRAMMER INTERFACE INTEFFACE

)
=

2716 PROM I PARALLE[CRT AUDIO
PROGRAMMER J PRINTER TERMINAL CASSETTE

SOCKET RECORDER
7 Z ~ 4 1 ~

F ig . 2. B lock d iagram o f MODEST.

3.2 MODEST features
• Program development in user system

By having a resident development system using the
MODEST principle a minimum hardware cost is obtained.
Actual costs are so low that in many instances the user
system wil l have the MODEST integrated permanently to
support ease of reprogramming and machine maintenance.

• Programming socket for 2716 (E)PROM
Makes MODEST into a self-contained total development
system. Strongly supports applications where the need for
program changes is a prime consideration.

• Audio cassette interface
This feature permits program loading and dumping in a
low cost non-votatile medium. Thanks to object code
storage there is no need for the expense of large storage
media. Reprogramming by cassette supports system
f lexibi l i ty.

• Parallel printer interface
Permits fast program print-out with low cost printers.
Simple handshake procedure is provided.

• RS232-C interface for VDU
Allows the large amounts of MODEST info to be displayed
quietly.

• Programming on assembler level
Avoids the tedious error-prone job of hex or machine level
code writing. Cuts programming t ime to a fraction.

• Storage in object code
Gives minimum memory requirements. Readable
acronyms and clear text present valuble test and
maintenance info.

• Disassembler for mnemonics display
Allows programevaluation from a formatted readable
display in each stage of the project.

• Forward labelling
Pre-labelling for programming f lexib i l i ty provided.

• Step-by-step operation, MODEST controlled
Permits a display of all CPU variables, e.g. Internal
Registers, Program Status Word, Address, Return Address
Stack, calculated next instruction address. Manipulation of
variables via keyboard. Either in RAM or PROM.

• Run operation, MODEST controlled
System runs wi thout display up to one of the 8 breakpoints.
As soon as a breakpoint is reached theactual address and
the status of the CPU variables are displayed.

• Run operation, User controlled
System runs in real t ime wi thout MODEST control up to
one of the 8 software breakpoints in RAM.

• Delete, Insert and Move
A delete, insert and move facil i ty is provided to correct
program parts with automatic address updating. This
eliminates the retyping of lengthy programs.

• Transfer
This eases the copying, loading and dumping of program
words (PROM Programmer). Useful in reallocation of
program segments.

3.3 Description of MODEST
When a user-system with MODEST is switched on or is reset,
the processor commences at the starting address of the
MODEST program. This is caused by the Forced Branch

MODEST - a Novel Development System 43

Generator which disables all the system program and
generates a jump to the starting address of MODEST.
MODEST always starts in the ENTRY mode. On the CRT
screen "MODEST ENTRY:" is displayed.
MODEST has 10 modes. Each mode is selected by typing the
relevant select character.
When an unknown character is typed, MODEST displays the
10 mode select characters: M-A-L-I-P-C-D-E-S-T. When a
mode is selected, MODEST displays the name of the modes
and asks the user to enter the start address, source or
destination address, and all the variables to be used in that
relevant mode. All information generated by MODEST, e.g.
program listing and error messages, can be displayed on the
screen of the CRT or can be printed on a parllel printer.

3.3.1 MODEST modes
Move: A block of instructions bounded by two addresses is
moved and inserted from a destination (start) address. All
addresses in this block and instructions referring to this block
are updated. Erroneous relative instructions are listed on the
screen or on the printer.
Alter memory: Permits the user to modify hexadecimal
program values in RAM directly. This is a handy repair mode
for small program errors or program updating.
List program: In this mode, a listing of the stored program
from RAM and/or (E)PROM can be displayed or printed. The
disassembler displays the program (bounded by two addresses)
in clear text and is properly formatted. An example of a
listing is given in fig. 3.

The listing starts with the current address followed by the
object code in hex numbers, instructions in mnemonics, the
associated address and, when present, a name of a subroutine.
When the program is stored in object code, each character
of text takes one byte of memory space.
To reduce the need for additional text, each subroutine can
start with a name. Each call to that subroutine, results in the
display of that name in the comment field.
To make some difference between instructions, t e x t ,
subroutine names, data fields and address fields, MODEST
makes use of pseudo-object codes. These are codes not known
by the 2650 but only recognized by MODEST. This enables
MODEST to give a conveniently arranged listing of the
program using instructions, data blocks, address blocks and
ASCII information.
Insert: A block of instructions bounded by two addresses
is copied and inserted at a destination address block. All the

MODEST ENTRY :L
LIST PROGRAM
FROM=UPTO:
0400 041D SP
PRINT ? (Y/N/CR)=N
0400 04 3F LODI. RO 3F
0402 07 17 LOOI, R3 17
0404 05 50 LODI, RI 50
0405 3F 7E g3 BST^,UN 7E93
040g Fg 7B BORR. RI 0405
040B FB 77 BDRR, R3 0404
040D 3F 7D 29 8STA, UN 7D29
0410 Ci STRZ, RI
0411 04 1A LODI , RO 1A
0413 3F 7E 93 BSTA, UN 7Eg3
0415 01 LODZ. RI
0417 18 B9 BCTR. UN 0402

TO SCREEN

KEYBOARD

TO SCREEN

Fig. 3. Program L i s t i ng o f MODEST.

addresses in this block are updated. Instructions referring to
this block are not changed.
Program entry: In this mode, after the first RAM address
has been allocated, the mnemonics can be typed on the
keyboard. MODEST assembles these mnemonics and stores
object code in the MODEST RAM buffer. The disassembler
in MODEST supplies the video screen with the mnemonic
together with the current address, the updated and
associated addresses, object code and, if applicable, the title
of the relevant associated address.
Finding the displayed program line correct, the programmer
can enter the object code in the USER-RAM and go to the
next line - the address will be incremented automatically.
In case an error has been made, the line can be deleted
(DEL key) and, by keying CR, rewritten.
It is possible to enter sub-routine titles, user text, data or
address constants directly via the keyboard. Forward
labelling is initiated by typing @ instead of the absolute
address and declaration at the effective address. Entering
incorrect mnemonics or symbols will cause MODEST to issue
an acoustic warning (beep).
After the last instruction is finished, the "END" statement
terminates this mode and MODEST returns to the Entry
mode.
Calls list: This mode allows a presentation of a list of
instructions of a program or part of a program referring to a
block of instructions bounded by two addresses. This is a
useful mode to get a listing of all the instructions in a program
that call a subroutine or use some scratch RAM.
Delete: A block of instructions can be deleted by using this
mode. When there are instructions referring to this block in
the program, these instructions are listed on the screen or on
the printer.
Execute: In the testing mode of MODEST there are three
possible submodes:
- step by step operation, MODEST controlled
- run operation, MODEST controlled
- run operation, User controlled
a short description of thes modes is given in the feature list.
Subroutine list: As each subroutine with a name is preceded
by a pseudo-opcode, MODEST is able to make a list of all
these subroutines. This list can be displayed or printed. The
name of the subroutine is shown, as well as the call address.
Transfer: A block of instructions bounded by two addresses is
copied and moved to RAM position. The old RAM contents
is overwritten.
This mode is also used to program a PROM or to read the
contents of the PROM and store it in RAM. In all transfer
functions, the addresses can be reallocated to any memory
address.

